
October 25, 2006 IISWC Valgrind Tutorial 1

IISWC-2006 Tutorial

BuildingBuilding
Workload Characterization ToolsWorkload Characterization Tools

with Valgrindwith Valgrind

Nicholas Nethercote - National ICT Australia
Robert Walsh - Qlogic Corporation
Jeremy Fitzhardinge - XenSource

October 25, 2006 IISWC Valgrind Tutorial 2

This tutorial
1. Introduction to Valgrind
2. Example profiling tools
3. Building a new Valgrind tool
4. More advanced tools

October 25, 2006 IISWC Valgrind Tutorial 3

(end of tutorial overview)

October 25, 2006 IISWC Valgrind Tutorial 4

1. Introduction to Valgrind1. Introduction to Valgrind

Robert Walsh

October 25, 2006 IISWC Valgrind Tutorial 5

This talk
• What is Valgrind?
• Who uses it?
• How it works

October 25, 2006 IISWC Valgrind Tutorial 6

What is Valgrind?

October 25, 2006 IISWC Valgrind Tutorial 7

Valgrind is…
• A framework

– For building program analysis tools
– E.g. profilers, visualizers, checkers

• A software package, containing:
– Framework core
– Several tools: memory checker, cache profiler,

call graph profiler, heap profiler
• Memcheck, the most widely used tool, is

often synonymous with “Valgrind”

October 25, 2006 IISWC Valgrind Tutorial 8

What kind of analysis? (1/2)
• Categorization 1: when does analysis occur?

– Before run-time: static analysis
• Simple preliminaries: parsing
• Complex analysis: e.g. abstract interpretation
• Imprecise, but can be sound: sees all execution paths

– At run-time: dynamic analysis
• Complex preliminaries: instrumentation
• Simpler analysis: “Perfect light of run-time”
• Powerful, but unsound: sees one execution path

• Valgrind performs dynamic analysis

October 25, 2006 IISWC Valgrind Tutorial 9

What kind of analysis? (2/2)
• Categorization 2: what code is analyzed?

– Source code: source-level analysis
• Language-specific
• Requires source code
• High-level information: e.g. variables, statements

– Machine code: binary analysis
• Language-independent (can be multi-language)
• No source code (but debug info helps)
• Lower-level information: e.g. registers, instructions

• Valgrind performs binary analysis

October 25, 2006 IISWC Valgrind Tutorial 10

Dynamic binary analysis

• Valgrind: dynamic binary analysis (DBA)
– Analysis of machine code at run-time
– Instrument original code with analysis code
– Track some extra information: metadata
– Do some extra I/O, but don’t disturb execution

otherwise

Dynamic

Dynamic binary analysisStatic binary analysisBinary

Dynamic source-level analysisStatic source-level analysisSource

Static

October 25, 2006 IISWC Valgrind Tutorial 11

What kind of instrumentation?
• Categorization: When does binary instrumentation occur?

– Before run-time: static binary instrumentation (SBI)
• A.k.a. binary rewriting

– At run-time: dynamic binary instrumentation (DBI)

• Valgrind uses DBI. Compared to SBI:
– No preparation (e.g. recompilation) required
– All user-mode code instrumented

• Dynamically loaded libraries
• Dynamically generated code
• No code/data identification difficulties

– Instrumentation cost incurred at run-time

• A good DBI framework mitigates the run-time cost and
makes tool-writing much easier

October 25, 2006 IISWC Valgrind Tutorial 12

An aside
• Similar things to DBA and DBI:

– 1. Dynamic binary optimisation
• Rewrite binary on-the-fly for speed-ups
• E.g. Dynamo

– 2. Dynamic binary translation
• Run binary for platform X on platform Y

– 3. Semantics-affecting tools
• E.g. sandboxing, fault injection

• Not talking about these
– Valgrind tools can do (3), but usually don’t

October 25, 2006 IISWC Valgrind Tutorial 13

Similar systems
• DBI frameworks:

– Pin, DynamoRIO, DIOTA, DynInst, etc.
– Lots of overlap
– Each system supports different platforms

• Purify, Chaperon (part of Insure++)
– Memcheck (a memory-checking tool) is similar

• Valgrind:
– GPL
– Widely used, robust
– Slower for simple tools
– Designed for heavyweight tools, especially shadow value tools

(more in talk 4)

October 25, 2006 IISWC Valgrind Tutorial 14

Who uses Valgrind?

October 25, 2006 IISWC Valgrind Tutorial 15

Valgrind users
• Developers

– C (43%), C++ (49%), Fortran, Ada, Java
– Firefox, OpenOffice, KDE, GNOME, libstdc++, PHP,

Perl, Python, MySQL, Samba, RenderMan, NASA,
CERN, Unreal Tournament, parts of the Linux kernel

– Biggest program we know of: 25 MLOC
– Memcheck: 80% of usage, other tools still widespread

• Researchers
– Cambridge, MIT, CMU, UT, UNM, ANU, etc.
– For building new kinds of analysis tools
– For experimental evaluation of programs (Cachegrind)

• Website receives >1000 unique visitors per day

October 25, 2006 IISWC Valgrind Tutorial 16

Availability
• Free software (GPL)
• Standard Linux package
• Platforms:
‒ Valgrind 3.2.1: x86/Linux, AMD64/Linux,

PPC{32,64}/Linux
– In repository: PPC{32,64}/AIX
– Under development: PPC32/Darwin,

x86/Darwin, x86/FreeBSD, others
• www.valgrind.org

October 25, 2006 IISWC Valgrind Tutorial 17

How does Valgrind work?

October 25, 2006 IISWC Valgrind Tutorial 18

Basic architecture
• Valgrind core + tool plug-in = Valgrind tool
• Core:

– Executes the client program under its control
– Provides services to aid tool-writing

• E.g. error recording, debug info reading

• Tool plug-ins:
– Main job: instrument code blocks passed by the core

• Lines of code (mostly C, a little asm in the core):
– Core: 173,000
– Call graph profiler: 11,800
– Cache profiler: 2,400
– Heap profiler: 1,700

October 25, 2006 IISWC Valgrind Tutorial 19

Running a Valgrind tool (1/2)
[nevermore:~] date
Sat Oct 14 10:28:03 EST 2006
[nevermore:~] valgrind --tool=cachegrind date
==17789== Cachegrind, an I1/D1/L2 cache profiler.
==17789== Copyright (C) 2002-2006, and GNU GPL'd, by Nicholas Nethercote et al.
==17789== Using LibVEX rev 1601, a library for dynamic binary translation.
==17789== Copyright (C) 2004-2006, and GNU GPL'd, by OpenWorks LLP.
==17789== Using valgrind-3.2.1, a dynamic binary instrumentation framework.
==17789== Copyright (C) 2000-2006, and GNU GPL'd, by Julian Seward et al.
==17789== For more details, rerun with: -v
==17789==
Sat Oct 14 10:28:12 EST 2006
==17789==
==17789== I refs: 395,633
==17789== I1 misses: 1,488
==17789== L2i misses: 1,404
==17789== I1 miss rate: 0.37%
==17789== L2i miss rate: 0.35%
==17789==
==17789== D refs: 191,453 (139,922 rd + 51,531 wr)
==17789== D1 misses: 3,012 (2,467 rd + 545 wr)
==17789== L2d misses: 1,980 (1,517 rd + 463 wr)
==17789== D1 miss rate: 1.5% (1.7% + 1.0%)
==17789== L2d miss rate: 1.0% (1.0% + 0.8%)
==17789==
==17789== L2 refs: 4,500 (3,955 rd + 545 wr)
==17789== L2 misses: 3,384 (2,921 rd + 463 wr)
==17789== L2 miss rate: 0.5% (0.5% + 0.8%)

October 25, 2006 IISWC Valgrind Tutorial 20

Running a Valgrind tool (2/2)
• Tool output goes to stderr, file, fd or socket
• Program behaviour otherwise unchanged…
• …except much slower than normal

– No instrumentation: 4-10x
– Memcheck: 10-60x
– Cachegrind: 20-100x

• For most tools, slow-down mostly due to
analysis code

October 25, 2006 IISWC Valgrind Tutorial 21

Starting up
• Valgrind loads the core, chosen tool and

client program into a single process
• Lots of resource conflicts to handle, via:

– Partitioning: address space, fds
– Time-multiplexing: registers
– Sharing: pid, current working directory, etc.

• Starting up is difficult to do robustly
– Currently on our 3rd core/tool structuring and

start-up mechanism!

October 25, 2006 IISWC Valgrind Tutorial 22

Dynamic binary recompilation
• JIT translation of small code blocks

– Often basic blocks, but can contain jumps
– Typically 5-30 instructions

• Before a code block is executed for the first time:
– Core: machine code (architecture neutral) IR
– Tool: IR instrumented IR
– Core: instrumented IR instrumented machine code
– Core: caches and links generated translations

• No original code is run
• Valgrind controls every instruction

– Client is none the wiser

October 25, 2006 IISWC Valgrind Tutorial 23

Complications
• System calls

– Valgrind does not trace into the kernel
– Some are checked to avoid core/tool conflicts
– Blocking system calls require extra care

• Signals
– Valgrind intercepts handler registration and delivery
– Required to avoid losing control

• Threads
– Valgrind serializes execution (one thread at a time)
– Avoids subtle data races in tools
– Requires reconsideration due to architecture trends

October 25, 2006 IISWC Valgrind Tutorial 24

Function wrapping/replacement
• Function replacement

– Can replace arbitrary functions
– Replacement runs as if native (i.e. it is instrumented)

• Function wrapping
– Replacement functions can call the function they

replaced
– This allows function wrapping
– Wrappers can observe function arguments

• System call wrapping
– Similar functionality to function wrapping
– But separate mechanism

October 25, 2006 IISWC Valgrind Tutorial 25

Client requests
• Trap-door mechanism

– An unusual no-op instruction sequence
– Under Valgrind, it transfers control to core/tool
– Client can pass queries and messages to the core/tool
– Allow arguments and a return value
– Augments tool’s standard instrumentation

• Easy to put in source code via macros
– Tools only need to include a header file to use them
– They do nothing when running natively
– Tool-specific client requests ignored by other Valgrind tools

• Example:
– Memcheck instruments malloc and free
– Custom allocators can be marked with client requests that say “a

heap block was just allocated/freed”
– A little extra user effort helps Memcheck give better results

October 25, 2006 IISWC Valgrind Tutorial 26

Self-modifying code
• Without care, self-modifying code won’t run correctly

– Dynamically generated code is fine if it doesn’t change
– But if changed, the old translations will be executed

• An automatic mechanism:
– Hash of original code checked before each translation is executed
– Expensive, by default on only for code on the stack
– E.g. handles GCC trampolines for nested functions (esp. for Ada)

• A manual mechanism:
– A built-in client request: “discard existing translations for address

range A..B”
– Useful for dynamic code generators, e.g. JIT compilers

October 25, 2006 IISWC Valgrind Tutorial 27

Forests and trees
• Valgrind is a framework for building DBA tools
• Interesting in and of itself

– But it is a means to an end
• The tools themselves are the interesting part

– Actually, it is what the tools can tell you about
programs that is really the interesting part

• Next three talks cover:
– Existing profiling tools
– How to write new tools
– Some ideas for interesting new tools

October 25, 2006 IISWC Valgrind Tutorial 28

(end of talk 1)

October 25, 2006 IISWC Valgrind Tutorial 29

2. Example profiling tools2. Example profiling tools

Jeremy Fitzhardinge

October 25, 2006 IISWC Valgrind Tutorial 30

This talk
• Three existing profiling tools

– Cache profiler
– Call graph profiler
– Heap profiler

October 25, 2006 IISWC Valgrind Tutorial 31

Cachegrind: a cache profiler

October 25, 2006 IISWC Valgrind Tutorial 32

Cachegrind
• Cache behaviour is crucial

– L1 misses: ~10 cycles
– L2 misses: ~200 cycles

• But difficult to predict
• Cachegrind gives three outputs:

– Total hit/miss counts and ratios (I1, D1, L2)
– Per-function hit/miss counts (sorted from most to least)
– Per-line hit/miss counts (source code annotations)

• Source code annotations are the most useful
– Most fine-grained data
– Data that programmers can act on to speed up their programs

October 25, 2006 IISWC Valgrind Tutorial 33

Sample output
--
 Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw
--
14,789,396 547 544 6,329,792 751 689 2,111,757 1,113,292 1,094,855 PROGRAM TOTALS

--
 Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw file:function
--
14,688,273 1 1 6,294,531 0 0 2,098,178 1,113,088 1,094,656 example.c:main

--
-- Auto-annotated source: example.c
--
 Ir I1mr I2mr Dr D1mr D2mr Dw D1mw D2mw

 int main(void)
 10 0 0 0 0 0 1 0 0 {
 int i, j, a[1024][1024];

 4,100 1 1 2,049 0 0 1 0 0 for (i = 0; i < 1024; i++) {
4,198,400 0 0 2,098,176 0 0 1,024 0 0 for (j = 0; j < 1024; j++) {
5,242,880 0 0 2,097,152 0 0 1,048,576 65,536 56,320 a[i][j] = 0; // fast
5,242,880 0 0 2,097,152 0 0 1,048,576 1,047,552 1,038,336 a[j][i] = 0; // slow
 }
 }
 1 0 0 0 0 0 0 0 0 return 0;
 2 0 0 2 0 0 0 0 0 }

October 25, 2006 IISWC Valgrind Tutorial 34

How Cachegrind works
• Each instruction is instrumented

– Call to a C cache simulation function
– Different functions for loads, stores, modifies
– Some combining of C calls for efficiency

• Each source code line gets a cost centre
– Holds counters: accesses, hits and misses
– Uses debug info to map each instruction to a cost centre

• Online simulation (i.e. no trace gathering)
• Cost centres dumped to file at end

– Simple but compact text format
– Post-processing script produces previous slide’s output

October 25, 2006 IISWC Valgrind Tutorial 35

Cache simulation
• Approximates an AMD Athlon hierarchy

– I1, D1, inclusive L2
– Write-allocate
– LRU replacement

• Each cache is command-line configurable:
– Cache size
– Line size
– Associativity

• On x86/AMD64 can use CPUID to auto-detect
these parameters

• Simulation can be replaced easily

October 25, 2006 IISWC Valgrind Tutorial 36

Inaccuracies
• Imperfect address trace

– No kernel code
– Other processes ignored (arguably good)
– Conversion to Valgrind’s IR changes a very small number of

loads/stores

• Incorrect addresses
– Virtual addresses
– Memory layout and thread scheduling is different under

Cachegrind compared to native

• Prefetches and cache-bypassing are ignored
– Difficult to handle well without detailed microarchitectural

simulation

• Still useful for general insights

October 25, 2006 IISWC Valgrind Tutorial 37

How is it used?
• Characteriz ation:

– Program A vs. program B
– Cache hierarcy A vs. cache hierarchy B

• Optimisation:
– Identifies cache-unfriendly code
– Fixing such code requires non-trivial insight

• But easier (i.e. not impossible!) than fixing without this data

• Evaluation of optimisations:
– Program A vs. optimised program A

October 25, 2006 IISWC Valgrind Tutorial 38

Cachegrind summary
• Cachegrind is a cache simulator
• Gives total, per-function and per-line

hit/miss counts
• Simulation is imperfect, but still useful
• Used for characterization, optimisation and

evaluation

October 25, 2006 IISWC Valgrind Tutorial 39

Callgrind: a call graph profiler

October 25, 2006 IISWC Valgrind Tutorial 40

Callgrind
• Extension of Cachegrind
• By Josef Weidendorfer
• Also provides:

– Call graph information
– Graphical results viewer

(KCachegrind)
• Allows interactive browsing of

results
• Accepts Cachegrind results also

– Greater selectivity of what
code is profiled

October 25, 2006 IISWC Valgrind Tutorial 41

KCachegrind’s tree-map view

• Box sizes represent relative counts
• Nesting of boxes represents call chains
• Interactive: can drill down through boxes

October 25, 2006 IISWC Valgrind Tutorial 42

KCachegrind’s call graph view
• Shows whole call graph
• Boxes show count

proportions
• Interactive

October 25, 2006 IISWC Valgrind Tutorial 43

Selective profiling
• Can dump counts at particular times

– At termination (same as Cachegrind)
– Periodically (every N code blocks)
– At entry/exit of named functions
– At particular program points (using client requests)
– At any time (by invoking a separate script)

• Counters are zeroed after each dump
• Can choose which events to count

– Instructions
– Memory events (for cache simulation)
– Function entries/exits

October 25, 2006 IISWC Valgrind Tutorial 44

An interesting difficulty
• Callgrind maintains a call stack

– For tracking function entries/exits
• Several difficulties:

– setjmp/longjmp
– Tail recursion
– Dynamic linking

• Calls through jump tables
• Jump table patched on first call after loading

– Stack switching
• Missed entries/exits can throw everything out

October 25, 2006 IISWC Valgrind Tutorial 45

Interesting lessons
• Good tools go beyond the basics

– Results presentation
– Analysis selectivity

• Some tool tasks are more difficult than you
would expect

October 25, 2006 IISWC Valgrind Tutorial 46

Massif: a heap profiler

October 25, 2006 IISWC Valgrind Tutorial 47

Massif heap graph

October 25, 2006 IISWC Valgrind Tutorial 48

Massif
• Measures heap and stack

– Each heap allocation site is a band
– Stack is a band

• Also produces HTML output
– Represents the call graph underlying allocations
– Users can drill down through calling chains from

allocation sites
• Simple interaction with Valgrind’s core

– Only uses function wrapping
– No instrumentation of code blocks
– Complexity in the tool, not at the core/tool boundary

October 25, 2006 IISWC Valgrind Tutorial 49

Summary
• Cachegrind, Callgrind, Massif
• Three different profilers

– Not necessarily what you need
– Demonstrate the kinds of things you can do

• Next: details of how to write a tool

October 25, 2006 IISWC Valgrind Tutorial 50

(end of talk 2)

October 25, 2006 IISWC Valgrind Tutorial 51

3. Building3. Building a a newnew Valgrind Valgrind tooltool

Nicholas Nethercote

October 25, 2006 IISWC Valgrind Tutorial 52

This talk
• How to write a new tool from scratch

– Simple but useful example: memory tracer
– Start with simplest version
– Improve its accuracy and performance

October 25, 2006 IISWC Valgrind Tutorial 53

A new tool from scratch

October 25, 2006 IISWC Valgrind Tutorial 54

Memtrace
• Example tool
• Trace memory (data) accesses

– Loads, stores, modifies
• Print entry for each memory access

– Data address
– Data size

October 25, 2006 IISWC Valgrind Tutorial 55

Tool basics
• Tools must provide functions for 3 tasks:

– Initialization
– Instrumentation
– Finalization

• Analysis code can be added
– Inline
– Calls to C functions

• Tools provide functions that help the core
provide certain services
– E.g. error reporting, options processing

October 25, 2006 IISWC Valgrind Tutorial 56

Build environment
• In what follows, all filenames are relative to

top-level Valgrind directory
• Valgrind uses automake/autoconf

– Use an SVN version of Valgrind; this
 simplifies Makefile handling

– www.valgrind.org explains how to get the SVN
version

October 25, 2006 IISWC Valgrind Tutorial 57

Preliminaries
• Create empty directories:

– memtrace/

– memtrace/docs/

– memtrace/tests/

• Create empty files:
– memtrace/docs/Makefile.am

– memtrace/tests/Makefile.am

• Copy none/Makefile.am to memtrace/
• Edit files:

– Add three entries to AC_OUTPUT in configure.in:
• memtrace/Makefile

• memtrace/docs/Makefile

• memtrace/tests/Makefile

– Add memtrace to TOOLS in Makefile.am
– Change names within memtrace/Makefile.am appropriately:

• s/none/memtrace/

• s/nl_/mt_/

October 25, 2006 IISWC Valgrind Tutorial 58

First mt_main.c (1/3)
• Create memtrace/mt_main.c

– Two-letter prefix is just a convention

#include "pub_tool_basics.h" // Needed by every tool

#include "pub_tool_tooliface.h" // Needed by every tool

#include "pub_tool_libcprint.h" // For printing functions

#include "pub_tool_machine.h" // For VG_(fnptr_to_fnentry)

• Most tool-visible headers in include/pub_tool_*.h
• Next: four functions must be defined

– Pre-option-processing initialization
– Post-option-processing initialization
– Instrumentation
– Finalization

October 25, 2006 IISWC Valgrind Tutorial 59

First mt_main.c (2/3)
static void mt_pre_clo_init(void)

{

 // Required details for start-up message

 VG_(details_name) ("Memtrace");

 VG_(details_version) ("0.1");

 VG_(details_description) ("a memory tracer");

 VG_(details_copyright_author)("Copyright (C) 2006, J. Random Hacker.");

 // Required detail for crash message

 VG_(details_bug_reports_to) ("/dev/null");

 // Name the required functions #2, #3 and #4.

 VG_(basic_tool_funcs) (mt_post_clo_init,

 mt_instrument,

 mt_fini);

}

// This prevents core/tool interface problems, and names the required

// function #1, giving the core an entry point into the tool.

VG_DETERMINE_INTERFACE_VERSION(mt_pre_clo_init)

October 25, 2006 IISWC Valgrind Tutorial 60

First mt_main.c (3/3)
// Post-option-processing initialization function

static void mt_post_clo_init(void) { }

// Instrumentation function. "bbIn" is the code block.

// Others arguments are more obscure and often not needed -- see

// include/pub_tool_tooliface.h.

static IRBB* mt_instrument (VgCallbackClosure* closure,

 IRBB* bbIn,

 VexGuestLayout* layout,

 VexGuestExtents* vge,

 IRType gWordTy, IRType hWordTy)

{

 return bbIn;

}

// Finalization function

static void mt_fini(Int exitcode) { }

• (These functions must precede mt_pre_clo_init)

October 25, 2006 IISWC Valgrind Tutorial 61

Build and test
• Build:

./autogen.sh

./configure --prefix=`pwd`/inst

make install

• Test:
inst/bin/valgrind --tool=memtrace date

– Should run ok, but produce no output
• So far, almost identical to none/nl_main.c

– Now ready for proper tool-writing

October 25, 2006 IISWC Valgrind Tutorial 62

Vex IR
• Intermediate representation (Vex IR)

– Vex is the name of the JIT compiler sub-system
– Short code blocks (IRBB)

• Represent roughly 3-50 instructions each
– Arbitrary number of temporaries (intermediate values)

• A block’s type environment holds size of each temporary
– Sequences of statements (with side-effects) (IRStmt)

• E.g. stores, register writes
– Statements contain expression trees (no side-effects) (IRExpr)

• E.g. loads, arithmetic operations
• E.g. a store’s address and value are both expressions

– Each block ends in a jump
• All IR-related details are in VEX/pub/libvex_ir.h

– Included by pub_tool_tooliface.h, via libvex.h

October 25, 2006 IISWC Valgrind Tutorial 63

mt_instrument (outer)
// include/pub_tool_basics.h provides types such as "Int".

Int i;

// Setup bbOut: allocate, initialize non-statement parts: type

// environment, block-ending jump's destination and kind.

IRBB* bbOut = emptyIRBB();

bbOut->tyenv = dopyIRTypeEnv(bbIn->tyenv);

bbOut->next = dopyIRExpr(bbIn->next);

bbOut->jumpkind = bbIn->jumpkind;

// Iterate through statements, copy to bbOut, instrumenting

// loads and stores along the way.

for (i = 0; i < bbIn->stmts_used; i++) {

 IRStmt* st = bbIn->stmts[i];

 if (!st) continue; // Ignore null statements

 // <Instrument loads and stores here (next 2 slides)>

 addStmtToIRBB(bbOut, st);

}

return bbOut;

October 25, 2006 IISWC Valgrind Tutorial 64

mt_instrument (inner, 1/2)
switch (st->tag) {

 case Ist_Store: {

 // Pass to handle_store: bbOut, store address and store size.

 handle_store(bbOut, st->Ist.Store.addr,

 sizeofIRType(typeOfIRExpr(bbIn->tyenv, st->Ist.Store.data)));

 break;

 }

 case Ist_Tmp: { // A "Tmp" is an assignment to a temporary.

 // Expression trees are flattened here, so "Tmp" is the only

 // kind of statement a load may appear within.

 IRExpr* data = st->Ist.Tmp.data; // Expr on RHS of assignment

 if (data->tag == Iex_Load) { // Is it a load expression?

 // Pass handle_load bbOut plus the load address and size.

 handle_load(bbOut, data->Iex.Load.addr,

 sizeofIRType(data->Iex.Load.ty)); // Get load size from

 } // type environment

 break;

 }

 // <One more case (see next slide)>

}

October 25, 2006 IISWC Valgrind Tutorial 65

mt_instrument (inner, 2/2)
• “Dirty” statements represent unusual instructions,

e.g. cpuid, fxsave
– Avoids encoding highly architecture-specific details in

the IR
– Tools can still see the register and memory accesses

done by the instruction, and so do basic instrumentation
 case Ist_Dirty: {

 IRDirty* d = st->Ist.Dirty.details;

 if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)

 handle_load(bbOut, d->mAddr, d->mSize);

 if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)

 handle_store(bbOut, d->mAddr, d->mSize);

 break;

 }

October 25, 2006 IISWC Valgrind Tutorial 66

Adding calls to tracing functions
static void add_call(IRBB* bb, IRExpr* dAddr, Int dSize,

 Char* helperName, void* helperAddr)

{

 // Create argument vector with two IRExpr* arguments.

IRExpr** argv = mkIRExprVec_2(dAddr, mkIRExpr_HWord(dSize));

 // Create call statement to function at "helperAddr".

 IRDirty* di = unsafeIRDirty_0_N(/*regparms*/2, helperName,

 VG_(fnptr_to_fnentry)(helperAddr), argv);

 addStmtToIRBB(bb, IRStmt_Dirty(di));

}

static void handle_load(IRBB* bb, IRExpr* dAddr, Int dSize) {

 add_call(bb, dAddr, dSize, "trace_load", trace_load);

}

static void handle_store(IRBB* bb, IRExpr* dAddr, Int dSize) {

 add_call(bb, dAddr, dSize, "trace_store", trace_store);

}

• (These functions must precede mt_instrument)

October 25, 2006 IISWC Valgrind Tutorial 67

Run-time tracing functions
// VG_REGPARM(N): pass N (up to 3) arguments in registers on x86 --

// more efficient than via stack. Ignored on other architectures.

static VG_REGPARM(2) void trace_load(Addr addr, SizeT size)

{

 VG_(printf)("load : %08p, %d\n", addr, size);

}

static VG_REGPARM(2) void trace_store(Addr addr, SizeT size)

{

 VG_(printf)("store : %08p, %d\n", addr, size);

}

• (These functions must precede handle_load and
handle_store)

• These functions called for every load and store at run-time
• VG_(printf) is Valgrind’s printf function

– Valgrind does not use libc
– VG_() is a macro that prefixes a longer string to the name

October 25, 2006 IISWC Valgrind Tutorial 68

Improving accuracy and speed

October 25, 2006 IISWC Valgrind Tutorial 69

Improving Memtrace’s accuracy
• Previous code treats “modify” instructions as a load + store

– addl %eax, (%ebx) modifies (%ebx)

• Some instructions load/store multiple separate locations
– cmpsb loads (%esi), loads (%edi)
– pushl (%edx) loads (%edx), stores -4(%esp)
– movsw loads (%esi), stores (%edi)

• Collect load and store accesses for each instruction to
identify memory access type, then instrument
– IMark statements mark instru ction boundaries in statement list
– Modifies have a load and store to same address
– Allows instruction reads to be traced as well
– See lackey/lk_main.c for exactly this

• Could track loads/stores at system call boundaries

October 25, 2006 IISWC Valgrind Tutorial 70

Improving Memtrace’s speed
• C calls are expensive

– Save/restore caller-save registers around call
– Setup arguments
– Jump to function and back

• Can group C calls together
– E.g. common pairs like load/load, load/store,

store/store
– ~1/2 as many C calls to trace functions
– ~1/2 as many calls to VG_(printf)

October 25, 2006 IISWC Valgrind Tutorial 71

Improving speed in general
• C calls are expensive

– Combine when possible
– Use inline code where possible

• Especially for simple things like incrementing a counter

• Do work at instrumentation-time, not run-time
– Cachegrind stores unchanging info about each instruction (instr.

size, instr. addr, data size if a load/store) in a struct, passes struct
pointer to simulation functions

• Fewer arguments passed, shorter, faster code

• Do work in batches
– Eg. Instruction counter: increment by N at start of block, rather

than by 1 at every instruction

• Compress repetitive analysis data

October 25, 2006 IISWC Valgrind Tutorial 72

More about tool-writing
• Vex IR is powerful but complex

– We have only scratched the surface
– All IR details are in VEX/pub/libvex_ir.h

• Tool-visible headers, one per module:
– include/pub_tool_*.h

– VEX/pub/libvex{,_basictypes,_ir}.h

• About 30 tool-visible modules:
– Header files provide best documentation
– coregrind/pub_core_<M>.h also helps explain

things about module <M>

• Existing tools (especially Lackey) are best guides

October 25, 2006 IISWC Valgrind Tutorial 73

Summary
• Have seen how to build a very simple tool
• Next: ideas for more ambitious tools

October 25, 2006 IISWC Valgrind Tutorial 74

(end of talk 3)

October 25, 2006 IISWC Valgrind Tutorial 75

4.4. More advanced More advanced toolstools

Nicholas Nethercote

October 25, 2006 IISWC Valgrind Tutorial 76

This talk
• Some interesting kinds of advanced tools

– Shadow location tools
– Shadow value tools

• Example: Redux, a dynamic dataflow graph tracer
• Idea: Bandsaw, a memory bandwidth profiler

• What can you do with a Valgrind tool

October 25, 2006 IISWC Valgrind Tutorial 77

Shadow location & value tools

October 25, 2006 IISWC Valgrind Tutorial 78

Shadow location tools
• Tools that shadow every register and/or memory

location with a metavalue that says something
about it

• Examples:
– Memcheck: addressability of memory bytes
– Eraser: lock-sets held when memory bytes accessed
– Or, simpler: count how many times the location has

been accessed
• Each shadow location holds an approximation of

the history of its corresponding location

October 25, 2006 IISWC Valgrind Tutorial 79

Shadow value tools
• Tools that shadow every register and/or memory

value with a metavalue that says something about it
• Examples:

– Memcheck: definedness of values
– TaintCheck: taintedness of values
– Annelid: bounds of pointer values
– Hobbes: run-time types of values

• Each shadow value is an approximation of the
history of its corresponding value

October 25, 2006 IISWC Valgrind Tutorial 80

A powerful facility?
• Shadowing every location or value is

expensive and difficult, but doable
– Valgrind provides unique built-in support for it
– Memcheck’s slowdown factor is 10--60x

• What can you achieve by recording
something about every location or value in a
program?
– Let us consider an illuminating example
– Redux, a dynamic dataflow graph tracer

October 25, 2006 IISWC Valgrind Tutorial 81

Two programs
int faci(int n)

{

 int i, ans = 1;

 for (i = n; i > 1; i--)

 ans = ans * i;

 return ans;

}

int main(void)

{

 return faci(5);

}

int facr(int n)

{

 if (n <= 1)

 return 1;

 else

 return n * facr(n-1);

}

int main(void)

{

 return facr(5);

}

October 25, 2006 IISWC Valgrind Tutorial 82

Two DDFGs

October 25, 2006 IISWC Valgrind Tutorial 83

DDFG Features
• Each node represents a constant, or value-producing

operation:
– Arithmetic/logic instructions (add, sub, and, or, ...)
– Address computation instructions (lea)
– System calls

• Doesn’t show other operations:
– Copies (register/register, register/memory)
– Function calls, returns
– Branches

• Only shows:
– System call nodes (external behaviour)
– Parts of graph reachable from system call nodes (data flow)
– Interesting computations only! No book-keeping

October 25, 2006 IISWC Valgrind Tutorial 84

Hello world
• fstat64 checks stdout
• mmap allocates an output

buffer
• String length is counted
• write prints the string
• munmap frees the output

buffer
• _exit terminates program
• 29,000 nodes built, 17 shown!

– Most in dynamic linker

October 25, 2006 IISWC Valgrind Tutorial 85

Essences
int faca(int n, int acc)

{

 if (n <= 1)

 return acc;

 else

 return faca(n-1, acc*n);

}

int main(void)

{

 return faca(5, 1);

}

• Accumulator recursion
• Algorithmically

equivalent to iterative
version

• Identical DDFGs

October 25, 2006 IISWC Valgrind Tutorial 86

Stack machine version
• Folded top node reads

program, converts ASCII
characters to integers (1,
1, and 5)

• Same as C version, except
-(X,1) vs. dec(X)

• Very different
computation model

October 25, 2006 IISWC Valgrind Tutorial 87

Haskell version
main =

 putStrLn

 (show

 (facr 5 +

 faca 5 1)

)

• fac computations top right

October 25, 2006 IISWC Valgrind Tutorial 88

Scaling difficulties
• bzip2’ing a two-byte

file
– dot: 8 seconds
– ghostview: 5 seconds

• Scales terribly
– CPU/memory use
– Too big to view

October 25, 2006 IISWC Valgrind Tutorial 89

Possible uses?
• Hmm, maybe:

– Program visualisation
– Debugging by sub-graph inspection
– Dynamic slicing
– Program comparison

• Really, grasping at straws
– Too impractical as-is

October 25, 2006 IISWC Valgrind Tutorial 90

So why talk about Redux?
• It is a good pedagogical tool

– Explains dynamic binary analysis
– Explains shadow value tools
– Gets people thinking, generates ideas

• “You can do anything” is too abstract
• Makes the possibilities more concrete

• Shadow values are approximations of a
value’s history
– Redux shadow values show most of that history

October 25, 2006 IISWC Valgrind Tutorial 91

Shadow value/location profilers
• All existing shadow value/location tools are error

checkers
– Except Redux

• Profiling shadow location tools?
– Count how many times registers or memory locations

accessed?
• Profiling shadow value tools?

– Count how many times value has been copied?
• Something more interesting?

October 25, 2006 IISWC Valgrind Tutorial 92

An idea: Bandsaw
• Show how data flows from place to place through memory
• Measure the amount of memory bandwidth used by each

producer/consumer instruction pair

 line A: for (i = 0; i < 10*1000*1000; i++)

 a[i] = <...whatever...>

 line B: for (i = 0; i < 10*1000*1000; i++)

 sum += a[i];

• 40 MB transferred from line A to line B
• Shadow locations

– Each memory location shadowed with instr. addr of its producer
– Upon a read, increment the producer/consumer pair count

• Useful? Don’t know… but shows what you can do

October 25, 2006 IISWC Valgrind Tutorial 93

What can you do with a Valgrind
tool?

October 25, 2006 IISWC Valgrind Tutorial 94

Valgrind tools can…
• Delete, replace or augment every user-mode

instruction
• Add analysis code inline, or as calls to C

functions
• Wrap any system call
• Wrap any function
• Replace any function with a different one
• Observe or change any register or memory

value

October 25, 2006 IISWC Valgrind Tutorial 95

Instrumentation limitations
• Tools see Valgrind’s IR, not original
 instruction stream
– Allows platform-independent instrumentation
– Some information is lost
– But instruction boundaries are preserved

• Virtual addresses
• Microarchitecture not directly visible (e.g.

pipelines, µ-ops)
– Can simulate to a point (e.g. caches, branch

predictors)

October 25, 2006 IISWC Valgrind Tutorial 96

Some underlying concepts
• Profilers:

– Concepts: X happened N times, X happened near Y
• Cachegrind, Callgrind, Massif

• Checkers:
– Concept: X happened so Y should/should not happen

• Memcheck, Helgrind, TaintCheck, Annelid, Daikon
– Concept: X and Y were true at the same time, so…

• Data race detectors (Eraser, DRD)

• Visualizers:
– Concept: X fed into Y

• Redux

• These concepts are common, but not the only ones

October 25, 2006 IISWC Valgrind Tutorial 97

Brainstorming for new tools
• Power consumption profiling (Valgrind too high-level?)
• Floating point analysis/tracking

– Loss of precision, underflows, NaN propagation

• Global domain-specific constraints
– Pre/post-conditions, e.g. pthreads
– Resource allocation/deallocation tracking

• Fault/event injection
• Data flow profiling to guide hardware compilation
• De-compilation/de-obfuscation tools
• Test suite generation
• Analyse crypto code as it runs to extract keys?

October 25, 2006 IISWC Valgrind Tutorial 98

Tool design is difficult
• Need output that programmers can directly act on
• Efficiency of analysis code is crucial
• In checkers: getting the false positive rate down is hard
• Compilers generate really strange code

– So do humans

• Inferring high-level info from low-level code is hard
– E.g. is that a stack switch or large local array?

• Simple tools are boring!
– The good tools are 1000s of lines of code, not 10s or 100s
– Instrumentation (basic data extraction) is often only a small part
– Good tools do clever things with the extracted data
– Ability to write an instruction counter in only 5 lines is overrated

October 25, 2006 IISWC Valgrind Tutorial 99

Take-home message

October 25, 2006 IISWC Valgrind Tutorial 100

What do you want to know?
• What do you want to know about program execution that

existing tools cannot tell you?
• Valgrind lets you build powerful program analysis tools

– Can you learn what you want about programs using shadow
locations or shadow values?

– Or any other Valgrind-supported feature?

• The best tools do not arise in a vacuum
– Good: “I wish I knew X about my program…”
– Bad: “I want to write a tool. What would be a good one?”

• You are the people with the “I wish I knew X” ideas
– Let your imaginations loose
– Talk to the tool-makers
– Maybe your idea is possible

October 25, 2006 IISWC Valgrind Tutorial 101

Acknowledgments
• Valgrind developers: Julian Seward, Nicholas

Nethercote, Tom Hughes, Jeremy Fitzhardinge,
Robert Walsh, Josef Weidendorfer, Dirk Mueller,
Paul Mackerras, Cerion Armour-Brown, and many
others

• Other contributors: Donna Robinson, Alan
Mycroft

• Tim Sherwood and IISWC organizers for the
invitation

October 25, 2006 IISWC Valgrind Tutorial 102

(end of talk 4)

