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This tutorial
1. Introduction to Valgrind
2. Example profiling tools
3. Building a new Valgrind tool
4. More advanced tools
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(end of tutorial overview)
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1. Introduction to Valgrind1. Introduction to Valgrind

Robert Walsh
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This talk
• What is Valgrind?
• Who uses it?
• How it works
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What is Valgrind?
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Valgrind is…
• A framework

– For building program analysis tools
– E.g. profilers, visualizers, checkers

• A software package, containing:
– Framework core
– Several tools: memory checker, cache profiler,

call graph profiler, heap profiler
• Memcheck, the most widely used tool, is

often synonymous with “Valgrind”
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What kind of analysis? (1/2)
• Categorization 1: when does analysis occur?

– Before run-time: static analysis 
• Simple preliminaries: parsing
• Complex analysis: e.g. abstract interpretation
• Imprecise, but can be sound: sees all execution paths

– At run-time: dynamic analysis
• Complex preliminaries: instrumentation
• Simpler analysis: “Perfect light of run-time”
• Powerful, but unsound: sees one execution path

• Valgrind performs dynamic analysis
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What kind of analysis? (2/2)
• Categorization 2: what code is analyzed?

– Source code: source-level analysis
• Language-specific
• Requires source code
• High-level information: e.g. variables, statements

– Machine code: binary analysis
• Language-independent (can be multi-language)
• No source code (but debug info helps)
• Lower-level information: e.g. registers, instructions

• Valgrind performs binary analysis
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Dynamic binary analysis

• Valgrind: dynamic binary analysis (DBA)
– Analysis of machine code at run-time
– Instrument original code with analysis code
– Track some extra information: metadata
– Do some extra I/O, but don’t disturb execution

otherwise

Dynamic

Dynamic binary analysisStatic binary analysisBinary

Dynamic source-level analysisStatic source-level analysisSource

Static
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What kind of instrumentation?
• Categorization: When does binary instrumentation occur?

– Before run-time: static binary instrumentation (SBI)
• A.k.a. binary rewriting

– At run-time: dynamic binary instrumentation (DBI)

• Valgrind uses DBI.  Compared to SBI:
– No preparation (e.g. recompilation) required
– All user-mode code instrumented

• Dynamically loaded libraries
• Dynamically generated code
• No code/data identification difficulties

– Instrumentation cost incurred at run-time

• A good DBI framework mitigates the run-time cost and
makes tool-writing much easier
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An aside
• Similar things to DBA and DBI:

– 1. Dynamic binary optimisation
• Rewrite binary on-the-fly for speed-ups
• E.g. Dynamo

– 2. Dynamic binary translation
• Run binary for platform X on platform Y

– 3. Semantics-affecting tools
• E.g. sandboxing, fault injection

• Not talking about these
– Valgrind tools can do (3), but usually don’t
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Similar systems
• DBI frameworks:

– Pin, DynamoRIO, DIOTA, DynInst, etc.
– Lots of overlap
– Each system supports different platforms

• Purify, Chaperon (part of Insure++)
– Memcheck (a memory-checking tool) is similar

• Valgrind:
– GPL
– Widely used, robust
– Slower for simple tools
– Designed for heavyweight tools, especially shadow value tools

(more in talk 4)
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Who uses Valgrind?
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Valgrind users
• Developers

– C (43%), C++ (49%), Fortran, Ada, Java
– Firefox, OpenOffice, KDE, GNOME, libstdc++, PHP,

Perl, Python, MySQL, Samba, RenderMan, NASA,
CERN, Unreal Tournament, parts of the Linux kernel

– Biggest program we know of: 25 MLOC
– Memcheck: 80% of usage, other tools still widespread

• Researchers
– Cambridge, MIT, CMU, UT, UNM, ANU, etc.
– For building new kinds of analysis tools
– For experimental evaluation of programs (Cachegrind)

• Website receives >1000 unique visitors per day
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Availability
• Free software (GPL)
• Standard Linux package
• Platforms:
‒  Valgrind 3.2.1: x86/Linux, AMD64/Linux,

PPC{32,64}/Linux
– In repository: PPC{32,64}/AIX
– Under development: PPC32/Darwin,

x86/Darwin, x86/FreeBSD, others
• www.valgrind.org
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How does Valgrind work?
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Basic architecture
• Valgrind core + tool plug-in = Valgrind tool
• Core:

– Executes the client program under its control
– Provides services to aid tool-writing

• E.g. error recording, debug info reading

• Tool plug-ins:
– Main job: instrument code blocks passed by the core

• Lines of code (mostly C, a little asm in the core):
– Core: 173,000
– Call graph profiler: 11,800
– Cache profiler: 2,400
– Heap profiler: 1,700
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Running a Valgrind tool (1/2)
[nevermore:~] date
Sat Oct 14 10:28:03 EST 2006
[nevermore:~] valgrind --tool=cachegrind date
==17789== Cachegrind, an I1/D1/L2 cache profiler.
==17789== Copyright (C) 2002-2006, and GNU GPL'd, by Nicholas Nethercote et al.
==17789== Using LibVEX rev 1601, a library for dynamic binary translation.
==17789== Copyright (C) 2004-2006, and GNU GPL'd, by OpenWorks LLP.
==17789== Using valgrind-3.2.1, a dynamic binary instrumentation framework.
==17789== Copyright (C) 2000-2006, and GNU GPL'd, by Julian Seward et al.
==17789== For more details, rerun with: -v
==17789==
Sat Oct 14 10:28:12 EST 2006
==17789==
==17789== I   refs:      395,633
==17789== I1  misses:      1,488
==17789== L2i misses:      1,404
==17789== I1  miss rate:    0.37%
==17789== L2i miss rate:    0.35%
==17789==
==17789== D   refs:      191,453  (139,922 rd + 51,531 wr)
==17789== D1  misses:      3,012  (  2,467 rd +    545 wr)
==17789== L2d misses:      1,980  (  1,517 rd +    463 wr)
==17789== D1  miss rate:     1.5% (    1.7%   +    1.0%  )
==17789== L2d miss rate:     1.0% (    1.0%   +    0.8%  )
==17789==
==17789== L2 refs:         4,500  (  3,955 rd +    545 wr)
==17789== L2 misses:       3,384  (  2,921 rd +    463 wr)
==17789== L2 miss rate:      0.5% (    0.5%   +    0.8%  )
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Running a Valgrind tool (2/2)
• Tool output goes to stderr, file, fd or socket
• Program behaviour otherwise unchanged…
• …except much slower than normal

– No instrumentation:  4-10x
– Memcheck: 10-60x
– Cachegrind: 20-100x

• For most tools, slow-down mostly due to
analysis code
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Starting up
• Valgrind loads the core, chosen tool and

client program into a single process
• Lots of resource conflicts to handle, via:

– Partitioning: address space, fds
– Time-multiplexing: registers
– Sharing: pid, current working directory, etc.

• Starting up is difficult to do robustly
– Currently on our 3rd core/tool structuring and

start-up mechanism!
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Dynamic binary recompilation
• JIT translation of small code blocks

– Often basic blocks, but can contain jumps
– Typically 5-30 instructions

• Before a code block is executed for the first time:
– Core: machine code      (architecture neutral) IR
– Tool: IR                        instrumented IR
– Core: instrumented IR  instrumented machine code
– Core: caches and links generated translations

• No original code is run
• Valgrind controls every instruction

– Client is none the wiser
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Complications
• System calls

– Valgrind does not trace into the kernel
– Some are checked to avoid core/tool conflicts
– Blocking system calls require extra care

• Signals
– Valgrind intercepts handler registration and delivery
– Required to avoid losing control

• Threads
– Valgrind serializes execution (one thread at a time)
– Avoids subtle data races in tools
– Requires reconsideration due to architecture trends
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Function wrapping/replacement
• Function replacement

– Can replace arbitrary functions
– Replacement runs as if native (i.e. it is instrumented)

• Function wrapping
– Replacement functions can call the function they

replaced
– This allows function wrapping
– Wrappers can observe function arguments

• System call wrapping
– Similar functionality to function wrapping
– But separate mechanism
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Client requests
• Trap-door mechanism

– An unusual no-op instruction sequence
– Under Valgrind, it transfers control to core/tool
– Client can pass queries and messages to the core/tool
– Allow arguments and a return value
– Augments tool’s standard instrumentation

• Easy to put in source code via macros
– Tools only need to include a header file to use them
– They do nothing when running natively
– Tool-specific client requests ignored by other Valgrind tools

• Example:
– Memcheck instruments malloc and free
– Custom allocators can be marked with client requests that say “a

heap block was just allocated/freed”
– A little extra user effort helps Memcheck give better results
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Self-modifying code
• Without care, self-modifying code won’t run correctly

– Dynamically generated code is fine if it doesn’t change
– But if changed, the old translations will be executed

• An automatic mechanism:
– Hash of original code checked before each translation is executed
– Expensive, by default on only for code on the stack
– E.g. handles GCC trampolines for nested functions (esp. for Ada)

• A manual mechanism:
– A built-in client request: “discard existing translations for address

range A..B”
– Useful for dynamic code generators, e.g. JIT compilers
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Forests and trees
• Valgrind is a framework for building DBA tools
• Interesting in and of itself

– But it is a means to an end 
• The tools themselves are the interesting part

– Actually, it is what the tools can tell you about
programs that is really the interesting part

• Next three talks cover:
– Existing profiling tools
– How to write new tools
– Some ideas for interesting new tools
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(end of talk 1)
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2. Example profiling tools2. Example profiling tools

Jeremy Fitzhardinge
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This talk
• Three existing profiling tools

– Cache profiler
– Call graph profiler
– Heap profiler
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Cachegrind: a cache profiler
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Cachegrind
• Cache behaviour is crucial

– L1 misses: ~10 cycles
– L2 misses: ~200 cycles

• But difficult to predict
• Cachegrind gives three outputs:

– Total hit/miss counts and ratios (I1, D1, L2)
– Per-function hit/miss counts (sorted from most to least)
– Per-line hit/miss counts (source code annotations)

• Source code annotations are the most useful
– Most fine-grained data
– Data that programmers can act on to speed up their programs
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Sample output
--------------------------------------------------------------------------------
        Ir I1mr I2mr        Dr D1mr D2mr        Dw      D1mw      D2mw
--------------------------------------------------------------------------------
14,789,396  547  544 6,329,792  751  689 2,111,757 1,113,292 1,094,855  PROGRAM TOTALS

--------------------------------------------------------------------------------
        Ir I1mr I2mr        Dr D1mr D2mr        Dw      D1mw      D2mw  file:function
--------------------------------------------------------------------------------
14,688,273    1    1 6,294,531    0    0 2,098,178 1,113,088 1,094,656  example.c:main

--------------------------------------------------------------------------------
-- Auto-annotated source: example.c
--------------------------------------------------------------------------------
       Ir I1mr I2mr        Dr D1mr D2mr        Dw      D1mw      D2mw

        .    .    .         .    .    .         .         .         .  int main(void)
       10    0    0         0    0    0         1         0         0  {
        .    .    .         .    .    .         .         .         .     int i, j, a[1024][1024];
        .    .    .         .    .    .         .         .         .
    4,100    1    1     2,049    0    0         1         0         0     for (i = 0; i < 1024; i++) {
4,198,400    0    0 2,098,176    0    0     1,024         0         0        for (j = 0; j < 1024; j++) {
5,242,880    0    0 2,097,152    0    0 1,048,576    65,536    56,320           a[i][j] = 0;   // fast
5,242,880    0    0 2,097,152    0    0 1,048,576 1,047,552 1,038,336           a[j][i] = 0;   // slow
        .    .    .         .    .    .         .         .         .        }
        .    .    .         .    .    .         .         .         .     }
        1    0    0         0    0    0         0         0         0     return 0;
        2    0    0         2    0    0         0         0         0  }
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How Cachegrind works
• Each instruction is instrumented

– Call to a C cache simulation function
– Different functions for loads, stores, modifies
– Some combining of C calls for efficiency

• Each source code line gets a cost centre
– Holds counters: accesses, hits and misses
– Uses debug info to map each instruction to a cost centre

• Online simulation (i.e. no trace gathering)
• Cost centres dumped to file at end

– Simple but compact text format
– Post-processing script produces previous slide’s output
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Cache simulation
• Approximates an AMD Athlon hierarchy

– I1, D1, inclusive L2
– Write-allocate
– LRU replacement

• Each cache is command-line configurable:
– Cache size
– Line size
– Associativity

• On x86/AMD64 can use CPUID to auto-detect
these parameters

• Simulation can be replaced easily
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Inaccuracies
• Imperfect address trace

– No kernel code
– Other processes ignored (arguably good)
– Conversion to Valgrind’s IR changes a very small number of

loads/stores

• Incorrect addresses
– Virtual addresses
– Memory layout and thread scheduling is different under

Cachegrind compared to native

• Prefetches and cache-bypassing are ignored
– Difficult to handle well without detailed microarchitectural

simulation

• Still useful for general insights
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How is it used?
• Characteriz ation:

– Program A vs. program B
– Cache hierarcy A vs. cache hierarchy B

• Optimisation:
– Identifies cache-unfriendly code
– Fixing such code requires non-trivial insight

• But easier (i.e. not impossible!) than fixing without this data

• Evaluation of optimisations:
– Program A vs. optimised program A
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Cachegrind summary
• Cachegrind is a cache simulator
• Gives total, per-function and per-line

hit/miss counts
• Simulation is imperfect, but still useful
• Used for characterization, optimisation and

evaluation
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Callgrind: a call graph profiler
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Callgrind
• Extension of Cachegrind
• By Josef Weidendorfer
• Also provides:

– Call graph information
– Graphical results viewer

(KCachegrind)
• Allows interactive browsing of

results
• Accepts Cachegrind results also

– Greater selectivity of what
code is profiled
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KCachegrind’s tree-map view

• Box sizes represent relative counts
• Nesting of boxes represents call chains
• Interactive: can drill down through boxes
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KCachegrind’s call graph view
• Shows whole call graph
• Boxes show count

proportions
• Interactive
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Selective profiling
• Can dump counts at particular times

– At termination (same as Cachegrind)
– Periodically (every N code blocks)
– At entry/exit of named functions
– At particular program points (using client requests)
– At any time (by invoking a separate script)

• Counters are zeroed after each dump
• Can choose which events to count

– Instructions
– Memory events (for cache simulation)
– Function entries/exits
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An interesting difficulty
• Callgrind maintains a call stack

– For tracking function entries/exits
• Several difficulties:

– setjmp/longjmp
– Tail recursion
– Dynamic linking

• Calls through jump tables
• Jump table patched on first call after loading

– Stack switching
• Missed entries/exits can throw everything out
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Interesting lessons
• Good tools go beyond the basics

– Results presentation
– Analysis selectivity

• Some tool tasks are more difficult than you
would expect
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Massif: a heap profiler
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Massif heap graph
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Massif
• Measures heap and stack

– Each heap allocation site is a band
– Stack is a band

• Also produces HTML output
– Represents the call graph underlying allocations
– Users can drill down through calling chains from

allocation sites
• Simple interaction with Valgrind’s core

– Only uses function wrapping
– No instrumentation of code blocks
– Complexity in the tool, not at the core/tool boundary
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Summary
• Cachegrind, Callgrind, Massif
• Three different profilers

– Not necessarily what you need
– Demonstrate the kinds of things you can do

• Next: details of how to write a tool



October 25, 2006 IISWC Valgrind Tutorial 50

(end of talk 2)
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3. Building3. Building a a  newnew Valgrind  Valgrind tooltool

Nicholas Nethercote
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This talk
• How to write a new tool from scratch

– Simple but useful example: memory tracer
– Start with simplest version
– Improve its accuracy and performance
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A new tool from scratch
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Memtrace
• Example tool
• Trace memory (data) accesses

– Loads, stores, modifies
• Print entry for each memory access

– Data address
– Data size
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Tool basics
• Tools must provide functions for 3 tasks:

– Initialization
– Instrumentation
– Finalization

• Analysis code can be added
– Inline
– Calls to C functions

• Tools provide functions that help the core
provide certain services
– E.g. error reporting, options processing
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Build environment
• In what follows, all filenames are relative to

top-level Valgrind directory
• Valgrind uses automake/autoconf

– Use an SVN version of Valgrind;  this
 simplifies Makefile handling

– www.valgrind.org explains how to get the SVN
version
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Preliminaries
• Create empty directories:

– memtrace/

– memtrace/docs/

– memtrace/tests/

• Create empty files:
– memtrace/docs/Makefile.am

– memtrace/tests/Makefile.am

• Copy none/Makefile.am to memtrace/
• Edit files:

– Add three entries to AC_OUTPUT in configure.in:
• memtrace/Makefile

• memtrace/docs/Makefile

• memtrace/tests/Makefile

– Add memtrace to TOOLS in Makefile.am
– Change names within memtrace/Makefile.am appropriately:

• s/none/memtrace/

• s/nl_/mt_/
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First mt_main.c (1/3)
• Create memtrace/mt_main.c

– Two-letter prefix is just a convention

#include "pub_tool_basics.h"     // Needed by every tool

#include "pub_tool_tooliface.h"  // Needed by every tool

#include "pub_tool_libcprint.h"  // For printing functions

#include "pub_tool_machine.h"    // For VG_(fnptr_to_fnentry)

• Most tool-visible headers in include/pub_tool_*.h
• Next: four functions must be defined

– Pre-option-processing initialization
– Post-option-processing initialization
– Instrumentation
– Finalization
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First mt_main.c (2/3)
static void mt_pre_clo_init(void)

{

   // Required details for start-up message

   VG_(details_name)            ("Memtrace");

   VG_(details_version)         ("0.1");

   VG_(details_description)     ("a memory tracer");

   VG_(details_copyright_author)("Copyright (C) 2006, J. Random Hacker.");

   // Required detail for crash message

   VG_(details_bug_reports_to)  ("/dev/null");

   // Name the required functions #2, #3 and #4.

   VG_(basic_tool_funcs)        (mt_post_clo_init,

                                 mt_instrument,

                                 mt_fini);

}

// This prevents core/tool interface problems, and names the required

// function #1, giving the core an entry point into the tool.

VG_DETERMINE_INTERFACE_VERSION(mt_pre_clo_init)
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First mt_main.c (3/3)
// Post-option-processing initialization function

static void mt_post_clo_init(void) { }

// Instrumentation function.  "bbIn" is the code block.

// Others arguments are more obscure and often not needed -- see

// include/pub_tool_tooliface.h.

static IRBB* mt_instrument ( VgCallbackClosure* closure,

                             IRBB* bbIn,

                             VexGuestLayout* layout,

                             VexGuestExtents* vge,

                             IRType gWordTy, IRType hWordTy )

{

    return bbIn;

}

// Finalization function

static void mt_fini(Int exitcode) { }

• (These functions must precede mt_pre_clo_init)
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Build and test
• Build:

./autogen.sh

./configure --prefix=`pwd`/inst

make install

• Test:
inst/bin/valgrind --tool=memtrace date

– Should run ok, but produce no output
• So far, almost identical to none/nl_main.c

– Now ready for proper tool-writing
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Vex IR
• Intermediate representation (Vex IR)

– Vex is the name of the JIT compiler sub-system
– Short code blocks (IRBB)

• Represent roughly 3-50 instructions each
– Arbitrary number of temporaries (intermediate values)

• A block’s type environment holds size of each temporary
– Sequences of statements (with side-effects) (IRStmt)

• E.g. stores, register writes
– Statements contain expression trees (no side-effects) (IRExpr)

• E.g. loads, arithmetic operations
• E.g. a store’s address and value are both expressions

– Each block ends in a jump
• All IR-related details are in VEX/pub/libvex_ir.h

– Included by pub_tool_tooliface.h, via libvex.h
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mt_instrument (outer)
// include/pub_tool_basics.h provides types such as "Int".

Int i;

// Setup bbOut: allocate, initialize non-statement parts: type

// environment, block-ending jump's destination and kind.

IRBB* bbOut     = emptyIRBB();

bbOut->tyenv    = dopyIRTypeEnv(bbIn->tyenv);

bbOut->next     = dopyIRExpr(bbIn->next);

bbOut->jumpkind = bbIn->jumpkind;

// Iterate through statements, copy to bbOut, instrumenting

// loads and stores along the way.

for (i = 0; i < bbIn->stmts_used; i++) {

   IRStmt* st = bbIn->stmts[i];

   if (!st) continue;       // Ignore null statements

   // <Instrument loads and stores here (next 2 slides)>

   addStmtToIRBB(bbOut, st);

}

return bbOut;
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mt_instrument (inner, 1/2)
switch (st->tag) {

 case Ist_Store: {

   // Pass to handle_store: bbOut, store address and store size.

   handle_store(bbOut, st->Ist.Store.addr,

      sizeofIRType(typeOfIRExpr(bbIn->tyenv, st->Ist.Store.data)));

   break;

 }

 case Ist_Tmp: { // A "Tmp" is an assignment to a temporary.

   // Expression trees are flattened here, so "Tmp" is the only

   // kind of statement a load may appear within.

   IRExpr* data = st->Ist.Tmp.data;  // Expr on RHS of assignment

   if (data->tag == Iex_Load) {      // Is it a load expression?

      // Pass handle_load bbOut plus the load address and size.

      handle_load(bbOut, data->Iex.Load.addr,

         sizeofIRType(data->Iex.Load.ty));  // Get load size from

   }                                         // type environment

   break;

 }

 // <One more case (see next slide)>

}
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mt_instrument (inner, 2/2)
• “Dirty” statements represent unusual instructions,

e.g. cpuid, fxsave
– Avoids encoding highly architecture-specific details in

the IR
– Tools can still see the register and memory accesses

done by the instruction, and so do basic instrumentation
 case Ist_Dirty: {

   IRDirty* d = st->Ist.Dirty.details;

   if (d->mFx == Ifx_Read || d->mFx == Ifx_Modify)

      handle_load(bbOut, d->mAddr, d->mSize);

   if (d->mFx == Ifx_Write || d->mFx == Ifx_Modify)

      handle_store(bbOut, d->mAddr, d->mSize);

   break;

 }
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Adding calls to tracing functions
static void add_call(IRBB* bb, IRExpr* dAddr, Int dSize,

                     Char* helperName, void* helperAddr)

{

   // Create argument vector with two IRExpr* arguments.

IRExpr** argv = mkIRExprVec_2(dAddr, mkIRExpr_HWord(dSize));

   // Create call statement to function at "helperAddr".

   IRDirty* di = unsafeIRDirty_0_N( /*regparms*/2, helperName,

                     VG_(fnptr_to_fnentry)(helperAddr), argv);

   addStmtToIRBB(bb, IRStmt_Dirty(di));

}

static void handle_load(IRBB* bb, IRExpr* dAddr, Int dSize) {

   add_call(bb, dAddr, dSize, "trace_load", trace_load);

}

static void handle_store(IRBB* bb, IRExpr* dAddr, Int dSize) {

   add_call(bb, dAddr, dSize, "trace_store", trace_store);

}

• (These functions must precede mt_instrument)
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Run-time tracing functions
// VG_REGPARM(N): pass N (up to 3) arguments in registers on x86 --

// more efficient than via stack.  Ignored on other architectures.

static VG_REGPARM(2) void trace_load(Addr addr, SizeT size)

{

   VG_(printf)("load  : %08p, %d\n", addr, size);

}

static VG_REGPARM(2) void trace_store(Addr addr, SizeT size)

{

   VG_(printf)("store : %08p, %d\n", addr, size);

}

• (These functions must precede handle_load and
handle_store)

• These functions called for every load and store at run-time
• VG_(printf) is Valgrind’s printf function

– Valgrind does not use libc
– VG_() is a macro that prefixes a longer string to the name
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Improving accuracy and speed
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Improving Memtrace’s accuracy
• Previous code treats “modify” instructions as a load + store

– addl %eax, (%ebx) modifies (%ebx)

• Some instructions load/store multiple separate locations
– cmpsb loads (%esi), loads (%edi)
– pushl (%edx) loads (%edx), stores -4(%esp)
– movsw loads (%esi), stores (%edi)

• Collect load and store accesses for each instruction to
identify memory access type, then instrument
– IMark statements mark instru ction boundaries in statement list
– Modifies have a load and store to same address
– Allows instruction reads to be traced as well
– See lackey/lk_main.c for exactly this

• Could track loads/stores at system call boundaries
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Improving Memtrace’s speed
• C calls are expensive

– Save/restore caller-save registers around call
– Setup arguments
– Jump to function and back

• Can group C calls together
– E.g. common pairs like load/load, load/store,

store/store
– ~1/2 as many C calls to trace functions
– ~1/2 as many calls to VG_(printf)
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Improving speed in general
• C calls are expensive

– Combine when possible
– Use inline code where possible

• Especially for simple things like incrementing a counter

• Do work at instrumentation-time, not run-time
– Cachegrind stores unchanging info about each instruction (instr.

size, instr. addr, data size if a load/store) in a struct, passes struct
pointer to simulation functions

• Fewer arguments passed, shorter, faster code

• Do work in batches
– Eg. Instruction counter: increment by N at start of block, rather

than by 1 at every instruction

• Compress repetitive analysis data



October 25, 2006 IISWC Valgrind Tutorial 72

More about tool-writing
• Vex IR is powerful but complex

– We have only scratched the surface
– All IR details are in VEX/pub/libvex_ir.h

• Tool-visible headers, one per module:
– include/pub_tool_*.h

– VEX/pub/libvex{,_basictypes,_ir}.h

• About 30 tool-visible modules:
– Header files provide best documentation
– coregrind/pub_core_<M>.h also helps explain

things about module <M>

• Existing tools (especially Lackey) are best guides
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Summary
• Have seen how to build a very simple tool
• Next: ideas for more ambitious tools



October 25, 2006 IISWC Valgrind Tutorial 74

(end of talk 3)
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4.4. More advanced More advanced  toolstools

Nicholas Nethercote



October 25, 2006 IISWC Valgrind Tutorial 76

This talk
• Some interesting kinds of advanced tools

– Shadow location tools
– Shadow value tools

• Example: Redux, a dynamic dataflow graph tracer
• Idea: Bandsaw, a memory bandwidth profiler

• What can you do with a Valgrind tool
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Shadow location & value tools
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Shadow location tools
• Tools that shadow every register and/or memory

location with a metavalue that says something
about it

• Examples:
– Memcheck: addressability of memory bytes
– Eraser: lock-sets held when memory bytes accessed
– Or, simpler: count how many times the location has

been accessed
• Each shadow location holds an approximation of

the history of its corresponding location
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Shadow value tools
• Tools that shadow every register and/or memory

value with a metavalue that says something about it
• Examples:

– Memcheck: definedness of values
– TaintCheck: taintedness of values
– Annelid: bounds of pointer values
– Hobbes: run-time types of values

• Each shadow value is an approximation of the
history of its corresponding value
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A powerful facility?
• Shadowing every location or value is

expensive and difficult, but doable
– Valgrind provides unique built-in support for it
– Memcheck’s slowdown factor is 10--60x

• What can you achieve by recording
something about every location or value in a
program?
– Let us consider an illuminating example
– Redux, a dynamic dataflow graph tracer
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Two programs
int faci(int n)

{

   int i, ans = 1;

   for (i = n; i > 1; i--)

      ans = ans * i;

   return ans;

}

int main(void)

{

   return faci(5);

}

int facr(int n)

{

   if (n <= 1)

      return 1;

   else

      return n * facr(n-1);

}

int main(void)

{

   return facr(5);

}



October 25, 2006 IISWC Valgrind Tutorial 82

Two DDFGs
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DDFG Features
• Each node represents a constant, or value-producing

operation:
– Arithmetic/logic instructions (add, sub, and, or, ...)
– Address computation instructions (lea)
– System calls

• Doesn’t show other operations:
– Copies (register/register, register/memory)
– Function calls, returns
– Branches

• Only shows:
– System call nodes (external behaviour)
– Parts of graph reachable from system call nodes (data flow)
– Interesting computations only!  No book-keeping
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Hello world
• fstat64 checks stdout
• mmap allocates an output

buffer
• String length is counted
• write prints the string
• munmap frees the output

buffer
• _exit terminates program
• 29,000 nodes built, 17 shown!

– Most in dynamic linker
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Essences
int faca(int n, int acc)

{

   if (n <= 1)

      return acc;

   else

      return faca(n-1, acc*n);

}

int main(void)

{

   return faca(5, 1);

}

• Accumulator recursion
• Algorithmically

equivalent to iterative
version

• Identical DDFGs
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Stack machine version
• Folded top node reads

program, converts ASCII
characters to integers (1,
1, and 5)

• Same as C version, except
-(X,1) vs. dec(X)

• Very different
computation model



October 25, 2006 IISWC Valgrind Tutorial 87

Haskell version
main =

  putStrLn

    (show

      (facr 5 +

       faca 5 1)

    )

• fac computations top right
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Scaling difficulties
• bzip2’ing a two-byte

file
– dot: 8 seconds
– ghostview: 5 seconds

• Scales terribly
– CPU/memory use
– Too big to view



October 25, 2006 IISWC Valgrind Tutorial 89

Possible uses?
• Hmm, maybe:

– Program visualisation
– Debugging by sub-graph inspection
– Dynamic slicing
– Program comparison

• Really, grasping at straws
– Too impractical as-is
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So why talk about Redux?
• It is a good pedagogical tool

– Explains dynamic binary analysis
– Explains shadow value tools
– Gets people thinking, generates ideas

• “You can do anything” is too abstract
• Makes the possibilities more concrete

• Shadow values are approximations of a
value’s history
– Redux shadow values show most of that history
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Shadow value/location profilers
• All existing shadow value/location tools are error

checkers
– Except Redux

• Profiling shadow location tools?
– Count how many times registers or memory locations

accessed?
• Profiling shadow value tools?

– Count how many times value has been copied?
• Something more interesting?
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An idea: Bandsaw
• Show how data flows from place to place through memory
• Measure the amount of memory bandwidth used by each

producer/consumer instruction pair

   line A:  for (i = 0; i < 10*1000*1000; i++)

                a[i] = <...whatever...>

   line B:  for (i = 0; i < 10*1000*1000; i++)

                sum += a[i];

• 40 MB transferred from line A to line B
• Shadow locations

– Each memory location shadowed with instr. addr of its producer
– Upon a read, increment the producer/consumer pair count

• Useful?  Don’t know… but shows what you can do
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What can you do with a Valgrind
tool?
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Valgrind tools can…
• Delete, replace or augment every user-mode

instruction
• Add analysis code inline, or as calls to C

functions
• Wrap any system call
• Wrap any function
• Replace any function with a different one
• Observe or change any register or memory

value
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Instrumentation limitations
• Tools see Valgrind’s IR, not original
 instruction stream
– Allows platform-independent instrumentation
– Some information is lost
– But instruction boundaries are preserved

• Virtual addresses
• Microarchitecture not directly visible (e.g.

pipelines, µ-ops)
– Can simulate to a point (e.g. caches, branch

predictors)
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Some underlying concepts
• Profilers:

– Concepts: X happened N times, X happened near Y
• Cachegrind, Callgrind, Massif

• Checkers:
– Concept: X happened so Y should/should not happen

• Memcheck, Helgrind, TaintCheck, Annelid, Daikon
– Concept: X and Y were true at the same time, so…

• Data race detectors (Eraser, DRD)

• Visualizers:
– Concept: X fed into Y

• Redux

• These  concepts are common, but not the only ones
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Brainstorming for new tools
• Power consumption profiling (Valgrind too high-level?)
• Floating point analysis/tracking

– Loss of precision, underflows, NaN propagation

• Global domain-specific constraints
– Pre/post-conditions, e.g. pthreads
– Resource allocation/deallocation tracking

• Fault/event injection
• Data flow profiling to guide hardware compilation
• De-compilation/de-obfuscation tools
• Test suite generation
• Analyse crypto code as it runs to extract keys?
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Tool design is difficult
• Need output that programmers can directly act on
• Efficiency of analysis code is crucial
• In checkers: getting the false positive rate down is hard
• Compilers generate really strange code

– So do humans

• Inferring high-level info from low-level code is hard
– E.g. is that a stack switch or large local array?

• Simple tools are boring!
– The good tools are 1000s of lines of code, not 10s or 100s
– Instrumentation (basic data extraction) is often only a small part
– Good tools do clever things with the extracted data
– Ability to write an instruction counter in only 5 lines is overrated
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Take-home message
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What do you want to know?
• What do you want to know about program execution that

existing tools cannot tell you?
• Valgrind lets you build powerful program analysis tools

– Can you learn what you want about programs using shadow
locations or shadow values?

– Or any other Valgrind-supported feature?

• The best tools do not arise in a vacuum
– Good: “I wish I knew X about my program…”
– Bad: “I want to write a tool.  What would be a good one?”

• You are the people with the “I wish I knew X” ideas
– Let your imaginations loose
– Talk to the tool-makers
– Maybe your idea is possible
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(end of talk 4)


