
Fault Detection in Multi-Threaded C++ Server Applications

Arndt Mühlenfeld
Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/2

A-8010 Graz
Austria

amuehlen@ist.tugraz.at

Franz Wotawa
Institute for Software Technology

Graz University of Technology
Inffeldgasse 16b/2

A-8010 Graz
Austria

wotawa@ist.tugraz.at

ABSTRACT
Due to increasing demands in processing power on the one
hand, but the physical limit on CPU clock speed on the
other hand, multi-threaded programming is becoming more
important in current applications. Unfortunately, multi-
threaded programs are prone to programming mistakes that
result in hard to find defects, mainly race-conditions and
deadlocks. The need for tools that help finding these faults
is immanent, but currently available tools are either diffi-
cult to use because of the need for annotations, unable to
cope with more than a few 10 kLOC, or issue too many
false warnings. This paper describes experiments with the
freely available tool Helgrind, results obtained by using it
for debugging a server application comprising 500 kLOC.
We present improvements to the runtime analysis of C++
programs that result in a dramatic reduction of false warn-
ings.

Categories and Subject Descriptors
D.1.3 [ProgrammingTechniques]: Concurrent Program-
ming; D.1.5 [ProgrammingTechniques]: Object-oriented
Programming; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
data races, race conditions, debugging, parallel programs,
synchronization, multi-threaded programming, object-oriented
programming, static-dynamic co-analysis

1. INTRODUCTION
Hardware is becoming more powerful every year. Recent de-
velopments have pushed CPU speeds on the edge of manage-
able frequencies, further improvements are only possible by

multiplying the number of CPUs (or CPU cores on one chip).
Today’s software does not benefit from multi-processor ma-
chines unless it utilizes multiple threads. Thus, the need for
”multi-threading” applications is increasing.

In addition, multi-threading is a powerful paradigm that
may help partitioning programs into logical threads of execu-
tion, thereby making interleaved operations easier to model.
But parallel execution introduces possible faults that are
difficult to detect and localize by conventional debugging
techniques, due to the unpredictable and therefore nonde-
terministic execution order of concurrent programs.

Without proper synchronization two major classes of faults
unique to concurrent execution can be identified. Data races,
where unsynchronized access to shared memory locations re-
sults in inconsistent data, and dead locks, where two or more
threads block each other, mostly because of cyclic dependen-
cies.

Hence, developers need tools that help in finding these kind
of faults. Proposed solutions for multi-threading fault de-
tection include model-checking, static analysis and runtime
analysis.

Model-checking suffers from the problem of state space ex-
plosion. In spite of all efforts (e.g. counter example guided
abstraction refinement [3]) it is still not applicable to large
programs. Static analysis techniques try to locate possible
faults by applying heuristics to the source code. Detecting
all feasible data races by static analysis is well-known to be
an NP-hard problem [11]. Another problem in the C++
domain is the lack of freely available correct and reliable
parsers that generate suitable abstract representations.

Runtime-methods scale well, but only faults on the path
of execution are taken into account, therefore the detection
of all data races is impossible, too. But it is possible to
detect and report all apparent data races on the execution
path. An efficient lock-set based runtime-algorithm called
Eraser [14] was implemented in the open-source tool Val-
grind and is thereby available for all Linux-x86 based envi-
ronments. Unfortunately, at least for C++ applications, the
number of falsely reported possible data races is too large,
making the tool difficult to use since every reported location
has to be checked by hand.

In general, the algorithm is easy to use, because it does not
require special tuning or annotations by the programmer
making it a perfect tool for every days use. Though, the
average programmer will not use a tool that generates hun-
dreds of spurious warnings that he has to analyze by hand,
which is a time consuming and error-prone task. Hence, it is
necessary to reduce the number of false positives while keep-
ing the original unsupervised reliable behavior. In addition,
programmer written annotations should not be needed.

The solution is to combine both, static and runtime analysis,
by annotating the program automatically and transparently
to the programmer in order to provide the runtime method
with additional knowledge gathered from the structure of
the source code. While these hints reduce reporting of false
positives, they are not necessary. Therefore, it is still pos-
sible to analyze programs, where only parts of the source
code are available.

This work presents results from experiments where the Eraser
implementation in the tool Helgrind was applied to an ex-
isting network server application. Two improvements were
made: One to better simulate actual hardware behavior (i.e.
bus locking). Another to cope with effects introduced by
C++ specific implementation issues. This drastically re-
duces the amount of false positives reported, making the
tool usable for the debugging of large C++ applications. In
particular, the amount of false positives removed by our im-
provements during our experiments was in the range of 65%
to 81% of the total number of warnings.

This paper is organized as follows: Section 2 contains an
overview of runtime methods for fault detection in multi-
threaded programs and the runtime detection implemented
in Helgrind is presented in greater detail. In Section 3, we
present our method of source-code annotation in order to
make runtime analysis more accurate and describe the gen-
eral environment for the experiments. Results from our ex-
periments are presented in Section 4. Finally, Section 5
concludes the paper with a general discussion of our results.

2. FAULT DETECTION
In this section, we first present some definitions of faults
unique to concurrent programs. Then an overview of run-
time methods for detecting these faults is given, followed by
a more detailed description of the algorithms implemented
in the freely available tool Helgrind, which was used as a
basis for our experiments.

2.1 Definitions
Faults that are unique to concurrent programs are data races
and deadlocks.

A deadlock is defined as a state, where each thread in a
collection of two or more threads tries to acquire a lock
already held by one of the other threads in the collection.
Hence, the threads are blocked on each other in a cyclic
manner.

A data race occurs, when two or more concurrent threads
access a shared location which is not protected by a proper
synchronization construct (e.g., a monitor) and at least one
of them modifies the contents of the accessed component.

This definition is a bit restrictive, in fact, it describes the
locking policy enforced by the Eraser algorithm. The weak-
ness of the definition is that the program can reach an incon-
sistent state, even if every single access to a shared location
is protected by proper synchronization.

This will become clear in the following example:

Suppose, we have a data structure containing two elements,
let us say the date-of-birth and age of an arbitrary person.
Because the current age of the person could be calculated
by counting the time elapsed from date-of-birth until now
the variables depend on each other. In addition, there is a
synchronization object protecting access to the data. Two
setter-methods exist, one to set the date-of-birth and the
other to set the age. Now, when updating the structure we
first write the new date of birth followed by a call to set
the new value for age. Both methods use synchronization to
protect their field accesses. Therefore the rule, that every
single access to the shared location is protected by synchro-
nization, is satisfied. Nevertheless, it is possible to reach an
inconsistent state between two write accesses that depend
on each other, because the lock is released in-between.

Even when every single access to a data structure is pro-
tected by a lock, it might be possible to reach an inconsistent
state for the data. In [1] this is called a high-level data race,
because the notion of a data race does not seem to be pow-
erful enough, In other works [4, 15], the problem is tackled
by the definition of atomicity and atomicity violations.

While usually not resulting in actual faults, the locking
strategy itself has an impact on the performance of the
application. At worst, all data are protected by a single
(global) lock, resulting in unnecessary blocking of indepen-
dent threads. Or, more general, heavy usage of a global re-
source by all threads degrades performance and drastically
reduces the speed-up in multi-processor systems.

2.2 Dynamic Methods
Most dynamic methods are based on the lock-set algorithm
Eraser or on Lamport’s happens-before relation [7].

The algorithm implemented in Eraser [14] tries to identify
the locks that guard a shared location by maintaining a lock-
set containing all locks that are active at each access. There-
fore, it is able to detect violations of the locking discipline, to
require that each shared location be protected by the same
lock (or set of locks) on each access to it.

A method, that was developed to detect data races in the
DSM System Millipage is the algorithm DJIT [6]. It utilizes
vector time frames and access logging to check the happens-
before relation between concurrent accesses to a shared lo-
cation. It relies on the assumption of an underlying coherent
system and detects only the first apparent data race.

The main advantage of the lock-set algorithm is the ability
to detect all possible data races that exist on the execution
path. On the other hand it sometimes gives too many false
detections. DJIT tries to locate only apparent data races,
hence detects data races on a subset of shared locations that
are reported by the lock-set approach and misses some real

data races. Therefore, Multi-Race [13] tries to improve the
data race detection capabilities by combining enhanced ver-
sions of Lock-set and DJIT into a common framework.

In [12] the authors combine a lock-set based data race detec-
tor with a vector clock based happens-before relation check
on Java synchronization primitives. Actions on these prim-
itives are viewed as events that impose an order on mem-
ory accesses between them. Unfortunately, neither their as-
sumption that unsynchronized memory writes become vis-
ible in causal order is true on all SMP systems, nor is the
relation between signal and wait operations on conditions
strong enough to impose the assumed order.

A major disadvantage of online techniques is that they slow
down the execution of the application under observation sig-
nificantly. Consequently, their use requires adaption of the
environment to support slower reactions. Principally, on-
the-fly checkers can work post mortem, too, reducing the
performance impact due to the online calculations. But they
still need logging of the execution trace. Hence, offline tech-
niques suffer from their need of large amounts of data.

Nevertheless, on-the-fly checkers scale well with program
size. They are not complete as only faults on the execution
path are found, but already in use in industrial software de-
velopment. One implementation is the freely available tool
Helgrind. We used it as a base for our experiments and the
underlying algorithm is described in the following section.

2.3 Runtime Analysis with Helgrind
2.3.1 The Tool
Helgrind is a Valgrind tool [10, 9] for detecting data races
in C and C++ programs. It uses the Eraser algorithm [14]
and improvements from Visual Threads [5] in order to reduce
reporting of false positives.

Valgrind is a binary instrumentation framework for Linux
ELF Binaries and was at first used as a memory checker.
Starting with version 2 the application was divided into a
core that generates intermediate code from an executable bi-
nary and interprets the code using just-in-time compilation
for speed improvements, and a skin or tool that instruments
the intermediate code before it is executed and interprets
the results.

This makes Valgrind a powerful and flexible tool for all kinds
of runtime checking.

In order to suppress false reportings in subsequent runs of
the checker, it is possible to write a so-called suppression-
file that contains report-type and call-stack-patterns of lo-
cations that are false positives or part of code that is not
modifiable (e.g., third-party libraries).

2.3.2 Basic Algorithm (Eraser)
Eraser [14] is an algorithm that checks a given program
whether each access to a shared memory location is pro-
tected by proper synchronization. In this implementation
it works only for programs that use the POSIX-Threads li-
brary, because calls to that library are intercepted in order
to track the status of the memory and the thread system.

Figure 1: States for a memory location. After being
allocated, it starts in state NEW. During initializa-
tion it is owned EXCLUSIVEly by the allocating
thread until another thread reads from or writes to
the location. Then, one of the SHARED states is
reached and the lock-set is initialized for consistency
checking. Nevertheless, race conditions are only re-
ported in the SHARED-MODIFIED state.

The basic synchronization object in POSIX-Threads is a
mutex (mutual exclusion), with methods to acquire (lock)
and release (unlock) it. Only one thread can hold a lock
at any given time, all other threads, that try to lock it, are
blocked, until the mutex is released again.

In order to avoid the need for annotations, the Eraser algo-
rithm tries to infer the mutex that protects a shared memory
location, and if the location is unprotected issues a warning.
Therefore a set is maintained for every shared memory loca-
tion, that contains the intersection of the sets of locks that
were held during all accesses to it.

The basic algorithm in pseudo-code:

Let locks held(t) be the set of locks held by thread t.
For each v, initialize C(v) to the set of all locks.
On each access to v by thread t,

set C(v) := C(v) ∩ locks held(t);
if C(v) = {}, then issue warning.

This should find all possible data-races, but results in too
many false positives. One major drawback is, that initial-
ization and read-shared data is not handled properly.

Some shared variables are initialized once by one thread and
subsequent accesses by other threads are only reads, hence a
lock is not needed. Therefore, states were introduced in the
Eraser algorithm, that enable it to deal with these situations
(cf. Figure 1).

The lock-set is not initialized as long as only one thread uses
the memory location. When another thread accesses the
memory location, the lock-set is initialized with all active
locks and the algorithm reports the next write access that
results in an empty lock-set.

Now, a thread that allocates a memory location, owns it
until another thread accesses the same memory location.
Hence, the allocating thread may initialism the shared vari-
able and then share it with other threads for reading only
without resulting in a warning by the race-detector.

Figure 2: A thread consists of thread segments,
that are separated by thread-create and -join op-
erations. Memory accesses that are limited to non-
overlapping thread segments are still exclusive even
if not done by a single thread.

There are cases, where the algorithm is now incomplete,
because of its dependence on the actual interleaving. It is
possible, that a possible data race exists, where the first read
access by another thread can occur before the initialization
is finished. It is not detected by the algorithm, because in
the observed interleaving, all writes took place before the
first (shared) read access.

According to the authors this drawback is out-weighted by
the reduction in the amount of false positives reported by
the modified algorithm. Repeated tests with different test
data (resulting in different interleavings) could help find
such data-races, if they exist.

An extension for read-write locks that is presented in the
original Eraser algorithm is not implemented in Helgrind.
Albeit it would be useful in certain circumstances.

When a variable enters the Shared-Modified state, checking
is as follows:

Let locks held(t) be the set of locks held in any mode by thread
t.

Let write locks held(t) be the set of locks held in write mode
by thread t.

For each v, initialize C(v) to the set of all locks.
On each read of v by thread t,

set C(v) := C(v) ∩ locks held(t);
if C(v) = {}, then issue warning.

On each write of v by thread t,
set C(v) := C(v) ∩ write locks held(t);
if C(v) = {}, then issue warning.

Thread Segments
Another typical scenario that results in a warning is as fol-
lows:
A thread allocates memory, initializes it by setting it to
something useful and fires up a second thread, that should
work on the data. After a while the first thread waits for the
second thread to finish, before it uses the memory again.

Thus, the memory is shared between threads, but at any
time only one thread accesses it. The ownership is passed
onto the second thread until it terminates.

This observation is used by VisualThreads ([5]) to further
reduce the number of false positives by introducing thread
segments (cf. Figure 2).

Instead of a thread being owner of a shared variable that is
in EXCLUSIVE state, it is now a thread segment that owns

it. Then, whenever another thread accesses the memory, it
is checked, whether the thread-segments overlap. If not, the
new thread-segment becomes the new owner instead of the
variable switching into SHARED state.

The modification to the Eraser algorithm:

1. When data d is marked as EXCLUSIVE, associate it
with the thread segment id of the current thread in-
stead of the thread id.

2. If data d is marked as EXCLUSIVE to thread segment
TSi, and is being touched by TSj , and TSi happens
before TSj in the graph, then instead of moving the
data to one of the shared states, associate d with TSj .
The state remains EXCLUSIVE.

Deadlock Detection
VisualThreads (and Helgrind) contains detection for explicit
and potential deadlock.

Explicit Deadlock

CheckDeadlock(object, mark)
{

// if we find current mark, then cycle detected
if object.mark == mark then report deadlock;

object.mark = mark;

for each o on which object depends
CheckDeadlock(o, mark);

}

3. IMPROVEMENTS AND EXPERIMENTS
After early experiments with Helgrind we found two im-
provements that help by reducing the number of false posi-
tives.

3.1 Improvements
First, we corrected the implementation of the hardware bus
lock in Helgrind. It was implemented by using a special
mutex, that is locked on every explicit invocation of the
LOCK prefix. According to Intel’s i386 specification read
operations do not require to use the LOCK prefix. it is only
needed for writes. A correct implementation is more like a
read-write lock. This required the implementation of read-
write locks in Helgrind. Now, the modified version of the
tool internally supports rw-locks. As a benefit, support for
the corresponding POSIX API could be added easily.

Helgrind is able to work without the need of source code.
Hence, the detection process is independent of the program-
ming language. Unfortunately, many of the analyzed warn-
ings turned out to be caused by C++ specific code.

When the destructor of an object is called every destructor
of its parents classes is called prior to actually releasing the
memory associated with the object. The destructor of the
super-class should only see the properties of its class and
therefore the environment has to be changed in order to
reflect this change in properties and virtual method pointers.

Figure 3: Data flow of the debugging process. All
or part of the source code is analyzed and instru-
mented. The resulting binary is executed on the
VM Valgrind with data race detection.

This change is done by writing to a location in the object’s
memory, hence resulting in a warning, because Helgrind does
not know anything about objects and destructors and that
accesses to an object’s memory in its destructor can not
result in a data race on itself.

Since the number of false positives due to polymorphic ob-
ject destruction code is rather large and identifying them
by hand is too much work, it is necessary to suppress them
automatically. It is done by annotating every delete oper-
ation in the source code of the program in order to mark
deleted memory for the race detection as exclusive. Parts
of the program, where the source code is not available will
not benefit from this annotation therefore still resulting in
false positives, but the overall number of false reportings is
reduced.

The method does not need whole program analysis and is
easily integrated into the build process. The annotation
could be inserted into production code, because the user-
space call to Helgrind is a no-op under normal program ex-
ecution with negligible execution time.

Annotation is done on-the-fly and it is easily removed from
the build process, since the source code is not modified, nei-
ther by the annotation tool nor by the programmer. The
whole process is described in greater detail in the following
section.

3.2 Debugging Process
When checking a program using the original Helgrind algo-
rithm, it is not necessary to compile the source code in a
special way. Symbol information is needed for convenience.
Without the debug symbols, Helgrind is not able to print
source line information or the function names on the call
stack for locations, where a fault is suspected. To check a
program for errors, it can be run unmodified with Helgrind.
A second step to interpret the results is necessary.

The instrumentation necessary to improve Helgrind requires
an additional first step. As shown later, the instrumentation
can be done during the build process without visible mod-
ifications to the source code and, more important, without
user interactions, thereby retaining the ease of use of the
debugging technique. After adding automatic source code
annotation to the process, the modified debugging process
consists of three parts (cf. Figure 3).

Instrumentation

All available source code could be instrumented to
help reduce false reportings of the runtime analysis.
For now, only delete operators are annotated to mark

/∗ Original source code ∗/
void g(char ∗ p)
{

delete p;
}

/∗ Annotated source code ∗/
#include <valgrind/helgrind.h>
namespace {

template <class Type>
inline Type ∗ ca deletor single(Type ∗ object)
{

VALGRIND HG DESTRUCT(object, sizeof(Type));
return object;

}
}
void g(char ∗ p)
{

delete ca deletor single (p);
}

Figure 4: An example for the annotation. The ar-
gument for operator delete is passed through a
function which announces the memory to be de-
stroyed to the race detector. The macro VAL-
GRIND HG DESTRUCT expands to a sequence of
mnemonics that do nothing under normal execution,
but are recognized by the interpreter of Helgrind as
a special function call.

the memory of the destructed object as exclusive, de-
stroyed.

For an example of instrumented code, see Figure 4,
but note, that it is presented in a state that does not
exist in the real process, because the preprocessing was
omitted for clarity.

The runtime analysis works without source code in-
strumentation, but the results are better with instru-
mentation.

Execution

The program is executed on the virtual machine with
test data from an automated test suite. The runtime
analysis is based on the tool Helgrind. Results are
written to a log file.

Analysis

The log file is analyzed by the user in order to verify if
the reported possible data race are in fact data races,
and if they are, corrections to the program are made.

3.3 Setup and Environment
SIP Proxy Server
All experiments are carried out on a Linux x86 system. The
application under test is a signaling server application for
the Session Initiation Protocol (SIP) that is used for Voice-
over-IP (VoIP) phone networks and utilizes POSIX-Threads
for multi-threading and synchronization primitives.

The concurrent pattern in use is ”thread-per-request”, i.e.,
for each request a new thread is created. This fits well
into the thread-segment improvement from VisualThreads,
because the ownership is passed to the worker thread by
thread creation. Although, synchronization is already done
by locks, it is necessary to check the application for data
races and dead locks, as it has shown non-deterministic fail-
ures when run with multiple threads.

The application is built from several hundred kLOC of C++
code, hence experimental tools, only written as proof-of-
concept, are not applicable. Furthermore, there are no re-
strictions on the usage of C++ language constructs ruling
out many of these experimental tools that rely on the us-
age of only a subset of the C++ language (e.g., to keep the
parser simple).

Instrumentation
For instrumentation, the C++-parser ELSA is used. ELSA
is based on Elkhound, a GLR-Parser generator[8]. ELSA
builds an abstract syntax tree that is used for source code
analysis and annotation.

The input for the parser must be preprocessed, because ex-
ternal files are not read by the parser, all needed information
must be included in the source file. Hence, the instrumen-
tation and compilation process has three stages.

First, the GNU compiler is used to preprocess the source
file. Then the parser reads the preprocessed source file and
generates the annotated source file.

In the third and last step, the compiler generates object code
from the annotated source file.

This can be done in a shell script that replaces the compiler
call during the build process, making the instrumentation
transparent to the build tools and the programmer.

Since instrumentation adds only user-space calls to the VM
that are, besides a small delay, without effect under normal
execution, it could be done in every build process. A draw-
back would be that build times are increased, because of the
additional second stage (instrumentation).

Test Bed
Debugging with data race detection requires a testing en-
vironment, preferably an automated test suite to guarantee
reliable repeatability of the test runs. A difficulty lies in the
different timing behavior of the program under test since
execution on the virtual machine slows it down by a fac-
tor of 20-30. Therefore, in some cases timeouts have to be
adapted to the changed response times. Furthermore, the
virtual machine in itself is single-threaded, thus adding more
processors does not help either.

In our environment, eight of eleven test cases on the SIP
proxy server ran without changes, they were used for the
experiments. The basic request patterns are delivered to the
application by an automated test suite. The main utility of
this test suite is SIPp, a tool for SIP load testing.

For data races an on-the-fly checker (Helgrind) is used, dead-
locks on Mutex locks are detected by the application using
a timeout while trying to acquire a lock inside the lock-
function, but the race-checker does dead-lock detection, too,
therefore the application level detection is not needed.

4. RESULTS
The test-suite with eight test cases was run with three dif-
ferent configurations. After running it with the original

Figure 5: Results of the debugging process. Eight
simple test cases where run with different configu-
rations of the race checker. The two upper parts
of a bar denote false positives, the smaller (top)
part counts warnings due to misinterpretation of the
hardware bus lock, the bigger part due to accesses
in the destructor of an object.

Test case Original HWLC HWLC+DR
T1 483 448 120
T2 319 215 60
T3 252 194 49
T4 576 490 149
T5 631 547 146
T6 620 604 181
T7 327 269 115
T8 357 270 78

Figure 6: Results of the debugging process. The
numbers are number of reported “possible data race
locations under different configurations. First, the
originally implemented algorithm in Helgrind was
used. Second, corrections were made to the emula-
tion of the hardware bus lock in Helgrind. The last
column contains the results after additionally apply-
ing source code annotations to delete operations.

Helgrind the number of reported possible data races was
recorded and after inspecting individual warnings, it was
clear that most of the warnings are false positives resulting
from a wrong implementation of the hardware bus lock se-
mantics and automatic modifications of objects on destruc-
tion. Both cases are explained below.

A second run was done with a corrected implementation
of the hardware bus lock (HWLC), where many warnings
disappeared. This run did not need source code instrumen-
tation.

In the third run (HWLCD+DR), the source code was anno-
tated to mark memory that is up to be destroyed just before
the destructor is called. This further reduces the amount of
reported possible data races by more than a half in all cases
(Figure 6).

Still, the number of reported data races is significant and
most of them are real synchronization failures, but some
faults form groups that stem from the same origin. That

map<string,DomainData∗> & ServerModulesManagerImpl::getDomainData()
{

MutexPtr mut(m pMutex); // Guard
return m DomainData;

}

Figure 7: Unprotected attribute due to return of ref-
erence.

means, it is generally a good idea to rerun the test suite after
fixing a problem. Then, all warnings related to the corrected
defect will disappear and do not have to be considered again.
Additionally, faults possibly introduced by the correction
generate new warnings.

An issue arising when using Helgrind with the GNU C++
Standard Library, is false reporting due to the memory allo-
cation strategy in the standard container objects. Memory
is reused internally and accesses to the reused memory re-
gions are reported as data races, even though the accesses
are separated by freeing and allocating, as Helgrind does
not know anything about them. Fortunately the allocation
strategy of the GNU Standard C++ Library is configurable
with environment variables, this must be done prior to call-
ing Helgrind.

4.1 True Positives
During our experiments, we found a number of real bugs in
the analyzed program. Since the application has about 500
kLOC, it is not always easy to decide, whether a reported
warning is a true defect, a false warning or just a benign race.
Nevertheless, we found a lot of real defects in the program, a
selection of bugs that seem to be common is presented here.

One of the first reported data races was in the application’s
deadlock detection code. Unfortunately this code was not
easy to change in order to remove the race condition, there-
fore, it was disabled for further experiments.

4.1.1 Initialization and Termination Order Problems
Another found error was a problem in the order of initial-
ization, i.e., a thread is started before parts of the data
structures it uses are initialized. This error was not directly
found by the tool, but occurred due to the different sched-
ule when running the program with instrumentation. In the
“usual” environment, the fault would not occur often enough
to attract attention.

On program shutdown, another data-race occurred, because
a data structure was destroyed, before a thread using it ter-
minated.

4.1.2 Synchronization Problems
Simple locking sometimes results in unnoticed bugs (Fig-
ure 7). A quick glance at the source-code reassures the pro-
grammer, that everything is fine, but even though a lock is
held in all methods of a class, there is a data access without
proper synchronization, for example a method returning a
reference to an attribute instead of its contents.

In the case found in the program under test, the attribute
is a map, therefore its use should be protected by the lock.
This bug requires to rewrite the function and all functions

that use it, because returning a reference to the internal
data structure prevents proper protection. To change that,
the signature of the function changes and all calls to the
function change, too.

4.1.3 Improper Use of System Functions
In a multi-threading environment, the use of some of the
system functions is not safe. Especially all functions that
use static data or, even worse, return a pointer to static data
are not thread-safe. The usage of some of these functions in
the application resulted in possible data races reported by
the tool.

A remark on the glib-c manual page acknowledges this:
“The four functions asctime(), ctime(), gmtime() and
localtime() return a pointer to static data and hence are
NOT thread-safe”

4.2 False Positives
Three kinds of false positives predominate the results. The
first two kinds described here were already addressed by our
improvements, while others still remain.

4.2.1 Destructor of Derived Classes
Helgrind reports a locking policy violation in the destruc-
tor of a few classes. These destructors are mainly default-
destructors, generated by the compiler, but the important
common property is that they all belong to derived classes.

When the destructor of an object is called every destructor
of its parents classes is called prior to actually releasing the
memory associated with the object. The destructor of the
super-class should only see the properties of its class and
therefore the environment has to be changed in order to
reflect this change in properties and virtual method pointers.

This change is done by writing to a location in the object’s
memory, hence resulting in a warning, because Helgrind does
not know anything about objects and destructors and that
accesses to an object’s memory in its destructor can not
result in a data race on itself.

This holds under the assumption that data is not accessed
after calling delete and thereby invoking its destructor. Vio-
lations of this assumption are detected by ordinary memory
checking tools, therefore it is not a special case for multi-
threaded programs and could be neglected during data race
detection.

4.2.2 Hardware Bus Lock
In this simple example (Figure 8) Helgrind reports a possible
data race at the assignment in Line 22.

The report is caused by the shared access to the reference
counter. The operation is protected by a hardware bus-lock,
but the read accesses preceding this write are not using the
lock, therefore the lock-set is empty.

The technique not to initialize the lock-set until the first oc-
currence of a write does not help here, because there already
was a write to this memory location in the other thread
(workerThread).

1 /∗! \ file stringtest . cpp
2 ∗ \ brief Test shared read−access of std :: string − objects .
3 ∗/
4
5 #include <string>
6 #include <pthread.h>
7
8 void ∗ workerThread(void ∗ arguments)
9 {

10 std :: string text = ∗(std:: string ∗)arguments;
11 return 0;
12 }
13
14 int main()
15 {
16 std :: string text(”contents”);
17
18 pthread t thread id;
19 pthread create(&thread id, 0, workerThread, &text);
20
21 sleep(1);
22 std :: string text copy = text; // <− reported conflict
23
24 void ∗ result = 0;
25 pthread join(thread id, &result);
26
27 return 0;
28 }

Figure 8: Example for a shared object of type
std::string. Strings are often implemented with ref-
erence counting. Thus, when a string object is
copied, it is sometimes necessary to modify the
source object by adding the new reference.

==19670== Possible data race writing variable at 0x1D6F9168
==19670== at 0x1D548451: std::string :: Rep:: M grab(std::allocator<char>

const&, std::allocator<char> const&) (in /usr/lib/gcc−lib/i686−pc−
linux−gnu/3.3.2/libstdc++.so.5.0.5)

==19670== by 0x1D548517: std::string:: string(std :: string const&) (in /usr/
lib/gcc−lib/i686−pc−linux−gnu/3.3.2/libstdc++.so.5.0.5)

==19670== by 0x804879F: main (stringtest.cpp:22)
==19670== Address 0x1D6F9168 is 8 bytes inside a block of size 21 alloc’d by

thread 1
==19670== at 0x1D4A8433: operator new(unsigned) (vg replace malloc.c:133)
==19670== by 0x1D545A98: std:: default alloc template<true, 0>::allocate(

unsigned) (in /usr/lib/gcc−lib/i686−pc−linux−gnu/3.3.2/libstdc++.so
.5.0.5)

==19670== by 0x1D54B3F7: std::string:: Rep:: S create(unsigned, std ::
allocator<char> const&) (in /usr/lib/gcc−lib/i686−pc−linux−gnu
/3.3.2/libstdc++.so.5.0.5)

==19670== by 0x1D54C13E: (within /usr/lib/gcc−lib/i686−pc−linux−gnu
/3.3.2/libstdc++.so.5.0.5)

==19670== Previous state: shared RO, no locks

Figure 9: Example for a warning issued by Helgrind.
The source of the warning is in the GNU Standard
C++ library, the method m grab() adds a reference
to a string object.

Figure 10: In the thread-per-request pattern, accesses
to the message data are separated by thread-create
and -join operations. The algorithm infers by com-
paring the thread segments that accesses are still
exclusive (per thread segment).

The detection algorithm does not take into account that the
operations are atomic. The read and write operations of the
reference counter are atomic, because it is an integer value
and all writes are protected by a bus locking prefix. It is
impossible to derive that from simple observations, as the
reference counter is part of the structure that contains the
data.

If Helgrind supported read-write locks, the hardware bus-
lock could be emulated as a read-write lock, being held for
reading in every read access and locked for writing, when
the lock prefix is used. This would emulate the behavior of
bus-locks more accurately and remove the spurious warning
in the string class.

As already described, we implemented this correction suc-
cessfully.

4.2.3 Transition of Ownership
The method used in the application is to spawn a new thread
for every request. When the amount of outstanding requests
at any time becomes more than the maximum allowed num-
ber of threads that run in parallel, the application will fail.

High performance server applications have to deal with many
parallel request and usually work by putting all incoming re-
quest into a queue, while having a fixed number of threads
(i.e. a thread pool) fetching data from the queue for pro-
cessing. That also avoids the overhead of creating and de-
stroying a thread for each request.

Thus, for the application under test it is planned to utilize
patterns that use thread pools in one way or the other.

This leads to the problem that the race detection algorithm
will report more false positives.

In the case of the thread-per-request pattern, accesses to
the data that are passed to the worker thread are clearly
separated (cf. Figure 10).

When using thread pools the situation changes. Thread cre-
ation is done before the data is initialized and passed to the
worker thread, hence the data race detection algorithm re-
ports a warning on the first write to this data. The accesses
are clearly separated by the put and get operations on the
message queue, but the algorithm does not detect that (cf.
Figure 11).

4.3 False Negatives

Figure 11: In patterns using thread pools, accesses to
the message data are separated by message put and
get operations. (post-wait) The algorithm used by
Helgrind does not take into account that accesses
are still exclusive.

The introduction of states in the Eraser algorithm in combi-
nation with delayed lock-set recording reduces the detection
capabilities of the algorithm. One of its greatest strength
is the ability to report data races independent of execution
order.

Suppose, one thread writes a shared location without ac-
quiring a lock, whereas another thread does the same, but
coincidentally holds a lock during that access. If the first
access takes place before the second one, no warning is re-
ported, because lock-set initialization is delayed until the
access of the second thread, and on that access a lock is
held.

If a different schedule leads to another execution order, the
(possible) data race is found and reported. But this is not
guaranteed to happen in the development environment, and
may cause failures after delivering the software to the cus-
tomer.

In fact, during the experiments such cases were found in the
source code and they have not been reported by the testing
process. This indicates, that it should be addressed in future
enhancements of the algorithm.

4.4 Summary
The problems of the algorithm we encountered (false posi-
tives and false negatives) fall into three categories:

• C++ implementation specific issues (Destructor). This
was fixed by source code analysis.

• Hardware related interpretation (CPU lock prefix). Af-
ter correcting the implementation of the hardware bus
lock, this was fixed too.

• The execution order imposed by higher level synchro-
nization primitives was not taken into account (false
positive) or it was falsely assumed to be guaranteed
(false negative).

Higher level synchronization based on the low level con-
structs is a field for further improvements

4.5 Performance
Unlike static methods, dynamic analysis scales well for large
programs. Program length is not very important, because
the main parameter for space and time complexity is the
length of the execution trace.

Generally, most runtime techniques can execute on-the-fly
or offline. Both have their advantages. On-the-fly analysis
usually has a significant negative impact on the execution
speed of the analyzed program, offline analysis needs infor-
mation logging which may result in heavy memory usage.
On the one hand, on-the-fly techniques are preferred, when
the amount of information that otherwise had to be logged is
large, on the other hand, logging and offline analysis is nec-
essary, when runtime analysis would slow down the program
to uselessness.

In our case, where each access to a memory location had
to be logged, offline analysis would be almost impossible for
long execution traces. Thus, the time consumed by anal-
ysis directly reduces the execution speed of the observed
program. Furthermore, since Valgrind executes binaries on
a virtual machine, even without instrumentation program
execution is slow.

Execution of the program with analysis using the presented
algorithm is 20-30 times slower than when run without Hel-
grind. When comparing this number to other works, where
the reported slowdown by Eraser-like algorithms is around
2-3 (or even less), one has to take into account, that these
results are obtained in environments, where the program is
always executed on a virtual machine like the Java VM (as
in [2, 12]) or Microsoft’s Common Language Runtime (as in
[16]). If run on Valgrind, the program is slowed down by
a factor of 8-10 without instrumentation. Thus, our results
are comparable to previous works.

5. CONCLUSION
Nowadays, many implementations of on-the-fly race detec-
tion algorithms exist. Unfortunately, most academic proof-
of-concept implementations are not applicable to real-world
applications. At least, the need to cope with more than a
subset of C++ is a knockout criterion, because to our knowl-
edge no parser is freely available that is able to generate an
abstract syntax tree for the full ISO C++ language.

Furthermore, for a concrete implementation in a tool addi-
tional criteria decide whether it is useful or not. Usually,
programmers are not willing to spend much time on param-
eter tweaking or analyzing tool output. To be most useful, a
tool should not require the user to be an academic. Hence,
the analyzing process must be easy to setup and the results
should contain very few if not zero false warnings. A good
example is the open source memory checker Valgrind, that is
widely accepted by programmers in different environments
because of its ease of use and the usefulness of its output.

Our experiments with the freely available tool Helgrind (which
is part of Valgrind) showed, that it is a good base for re-
search, but generates too many false warnings to be usable
in production environments. We analyzed hundreds of warn-
ings generated by the tool for a large commercial server ap-
plication. The results contained many false positives, but
we found real bugs, too. Based on our results we made im-
provements to the algorithm and analyzed the consequences.
That is, we added knowledge about language specific prop-
erties to the runtime analysis by unsupervised annotation of
object delete operations in the source code.

We have shown, that our improvements have a significant
effect on the amount of false positives reported by the lock-
set algorithm implemented in Helgrind. That is, the cor-
rect interpretation of the hardware bus lock on the x86-
architecture and special marking of objects that are about
to be destroyed. Furthermore, our improvements do not
complicate the debugging process much, in most cases only
a configuration switch for the build process has to be set.
And no manual source code annotations are necessary.

Further improvements could have a similar impact on the de-
tection abilities of the data race checker, but require more ef-
fort. The weaknesses with regard to common multi-threading
patterns should be addressed. Common concurrent patterns
often rely on higher level constructs for synchronization that
the lock-set algorithm is unaware of.

6. REFERENCES
[1] C. Artho, K. Havelund, and A. Biere. High-level data

races. Softw. Test., Verif. Reliab., 13(4):207–227, 2003.

[2] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In PLDI, pages 258–269, 2002.

[3] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-Guided Abstraction
Refinement. In E. A. Emerson and A. P. Sistla,
editors, CAV, volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2000.

[4] C. Flanagan and S. N. Freund. Atomizer: A Dynamic
Atomicity Checker for Multithreaded Programs
(summary). In IPDPS. IEEE Computer Society, 2004.

[5] J. J. Harrow. Runtime checking of multithreaded
applications with visual threads. In K. Havelund,
J. Penix, and W. Visser, editors, SPIN, volume 1885
of Lecture Notes in Computer Science, pages 331–342.
Springer, 2000.

[6] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai.
Toward integration of data race detection in DSM
systems. J. Parallel Distrib. Comput., 59(2):180–203,
1999.

[7] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[8] S. McPeak and G. C. Necula. Elkhound: A fast,
practical glr parser generator. In E. Duesterwald,
editor, CC, volume 2985 of Lecture Notes in Computer
Science, pages 73–88. Springer, 2004.

[9] N. Nethercote. Dynamic Binary Analysis and
Instrumentation. PhD thesis, University of
Cambridge, Trinity College, 2004.

[10] N. Nethercote and J. Seward. Valgrind: A Program
Supervision Framework. Electr. Notes Theor. Comput.
Sci., 89(2), 2003.

[11] R. H. B. Netzer and B. P. Miller. What are race
conditions? some issues and formalizations. LOPLAS,
1(1):74–88, 1992.

[12] R. O’Callahan and J.-D. Choi. Hybrid dynamic data
race detection. In PPOPP, pages 167–178. ACM, 2003.

[13] E. Poznianski and A. Schuster. Efficient On-the-Fly
Data Race Detection in Multithreaded C++
Programs. In IPDPS, page 287. IEEE Computer
Society, 2003.

[14] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. E. Anderson. Eraser: A Dynamic Data Race
Detector for Multithreaded Programs. ACM Trans.
Comput. Syst., 15(4):391–411, 1997.

[15] C. von Praun and T. R. Gross. Static detection of
atomicity violations in object-oriented programs.
Journal of Object Technology, 3(6):103–122, 2004.

[16] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack:
efficient detection of data race conditions via adaptive
tracking. In A. Herbert and K. P. Birman, editors,
SOSP, pages 221–234. ACM, 2005.

