A Tool Suite for Simulation Based Analysis of
Memory Access Behavior

Josef Weidendorfert, Markus Kowarschik!f, Carsten Trinitis?

fTechnische Universitét Miinchen, Germany
{weidendo,trinitic}@cs.tum.edu

t Universitit Erlangen-Niirnberg, Germany
kowarschik@cs.fau.de

Abstract. In this paper, two tools are presented: an execution driven
cache simulator which relates event metrics to a dynamically built-up
call-graph, and a graphical front end able to visualize the generated data
in various ways. To get a general purpose, easy-to-use tool suite, the sim-
ulation approach allows us to take advantage of runtime instrumentation,
i.e. no preparation of application code is needed, and enables for sophis-
ticated preprocessing of the data already in the simulation phase. In an
ongoing project, research on advanced cache analysis is based on these
tools. Taking a multigrid solver as an example, we present the results
obtained from the cache simulation together with real data measured by
hardware performance counters.

Keywords Cache Simulation, Runtime Instrumentation, Visualization.

1 Introduction

One of the limiting factors for employing the computational resources of mod-
ern processors is excessive memory access demands, i.e. not taking advantage of
cache hierarchies by high temporal and spatial locality of sequential memory ac-
cesses. Manual optimization activities trying to overcome this problem typically
suffer from difficult-to-use and -to-setup tools for detailed bottleneck analysis.
We believe that profiling tools based on simulation of simple cache models can
significantly help in this area. Without any need for hardware access to ob-
servation facilities, the simulator produces data easy to understand and does
not influence simulated results. Therefore, runtime instrumentation and sophis-
ticated preprocessing is possible directly in the simulation phase. Optimizations
based on cache simulation usually will improve locality of an application in a
general way, therefore enabling better cache usage not only on a specific hard-
ware platform, but on cache architectures in general. This gives the user more
flexibility in terms of target architectures. Furthermore, it is essential to present
the obtained measurement data in a way easy to understand.

Inclusive

Fig. 1. A dynamic call tree, its call graph, and its context call tree

In this paper, we discuss the tool suite Calltree/KCachegrind®. The profiling
tool uses the instrumentation framework Valgrind [18], running on Linux/TA-32.
The visualization front end, which is based on QT/KDE libraries, runs on most
UNIX platforms.

The paper is organized as follows: in the next section, we give a short overview
on profiling methods and problems. In section 3, simulation based profiling and
the implementation we use is covered in detail. Visualization concepts and im-
plementation are presented in section 4. In our ongoing project DIME?, memory
intensive multigrid algorithms are optimized with regard to their memory access
behavior. Section 5 discusses this application and presents measurements from
both simulation and hardware counters. We close by presenting related work and
future research directions.

2 Profiling

It is important to concentrate on code regions where most time is spent in typical
executions. For this, runtime distribution is detected by profiling. Also, it can
approve assumptions regarding runtime behavior, or show the right choice of
multiple possible algorithms for a problem. A dynamic call-tree (DCT), see fig.
1 (a), represents a full trace from left to right, and has a size linear to the number
of calls occurring. For profiling, the much smaller dynamic call graph (DCG), see
fig. 1 (b), typically is enough. However, a DCG contains less information: in fig.
1 (b), one cannot see that D — B — C actually never happened. Therefore, [1]
proposed the context call tree (CCT), see fig. 1 (¢), where each node represents
the occurrence of a function in a call chain, a context, starting at the root node?.
Our tool is able to produce a “reduced” CCT,,,, . as a CCT can still get huge,
we collapse two contexts if the trailing n,,4, contexts of the corresponding call
chains are identical. Table 1 gives some numbers on the size of these reduced
CCTs for various UNIX applications.

During the profiling processing, event attribution of nodes and arcs is done.
Events can be memory accesses, cache misses, or elapsed clock ticks, for example.

! nttp://kcachegrind.sf.net

2 http://wwwl0.informatik.uni-erlangen.de/Research/Projects/DiME/

% In the CCT, recursive calls or mutually recursive functions are handled specially to
avoid a size linear to the number of calls occurring at runtime.

Table 1. Number of nodes and arcs in reduced CCTs

Call chain length limit nmaa

Command 0| 1| 2| 5| 10| 20
bzip2 libm.so.6 Nodes 408 850] 1004| 1329| 1332 1132
(Compressor) Arcs|| 538| 688 861| 1113| 1113 1113
ccl ct_main-i.c Nodes|| 1 519| 5 157| 8 352| 22 060| 41 164| 44 899
(C compiler) Arcs|| 6 741|10 881| 15 905| 34 282| 52 191| 54 722
konqueror Nodes||21 500(55 829| 91 713|251 449|420 871|507 507
(KDE Browser) Arcs|[51 05290 629|147 958|315 838|470 032|544 487

Attributes of interest for nodes are the number of events occurring inside the
function (ezclusive or self cost), and additionally in functions which are called
from the given function (inclusive cost). For arcs, events occurring while the pro-
gram is running in code called via this arc are interesting, as well as the number
of times the call is executed. In fig. 1, event attribution is shown, assuming one
event during the execution of each function.

Profiling should not perturb the performance characteristics of the original
program, i.e. its influence on runtime behavior should be minimal. For this rea-
son, modern CPU architectures include performance counters for a large range
of event types, enabling statistical sampling: After a hardware counter is set to
an initial value, the counter is decremented whenever a given event takes place,
and when reaching zero, an interrupt is raised. The interrupt handler has ac-
cess to the program counter of the interrupted instruction, updates statistical
counters related to this address, resets the hardware counter and resumes the
original program?. The result of statistical sampling is self cost of code ranges.

To overcome the limits of pure statistical sampling, one has to instrument the
program code to be profiled. Several instrumentation methods exist: source mod-
ification, compiler injected instrumentation, binary rewriting to get an instru-
mented version of an executable, and binary translation at runtime. Instrumen-
tation adds code to increment counters at function entry/exit, reading hardware
performance counters, or even simulate hardware to get synthetic event counts.
To minimize measurement overhead, only small action is performed®. When syn-
thetic event counters are enough for the profiling result quality to be achieved,
hardware simulation allows for runtime instrumentation with its ease of use.

3 Simulation Based Profiling

Runtime instrumentation can dramatically increase execution time such that
time measurements become useless. However, it is adequate for driving hard-

4 For the results of statistical sampling to be meaningful, the distribution of every
n-th event occurring over the code range of a program should be the same as the
distribution of every event of this type.

® GProf [8] instrumentation still can have an overhead of 100%. Ephemeral Instru-
mentation [21], can keep instrumentation overhead smaller.

ware simulations. In our profiling tool, we use the CPU emulator Valgrind [18]
as a runtime instrumentation framework. The instrumentation drives the cache
simulation engine, which is largely based on the cache simulator found in Val-
grind itself: calls to the simulator are inserted on every instruction fetch, data
read, and data write. Separate counters for each original instruction are incre-
mented when an event occurs in the simulation of the simple, two-level cache
hierarchy. The cache model enables the user to understand the numbers easily,
but it has drawbacks compared to reality: it looks at memory accesses from
user-level only, simulates a single cache, and assumes a processor without an
out-of-order engine and without speculation. Despite of this, the synthetic event
counters often come close to numbers of actual hardware performance counters
[17]. We note that the simulation is not able to predict consumed wall clock
time, as this would need a detailed simulation of the microarchitecture.

Our addition to the simulation is two-folded: First, multiple counters are
maintained even for the same instruction, depending on the current thread ID
or the call chain leading to this instruction. Thus, we support profiles per threads
in multi-threaded code, and more fine-granular analysis by event attribution to
CCTs. Second, we introduce the ability for construction of the dynamic call
graph of the executed program. For every call site in the program, the list of
target addresses called from that site is noted, and for each of these call arcs,
the cost spent inside the called function. Optionally, this is even done for every
context of a call site, where the context includes the current thread ID and call
chain leading to this call site. To be able to provide the recent portion of a call
chain with a given length, we maintain our own call stack for every thread and
signal handler. Fortunately, thread switches can be trapped with Valgrind (using
its own implementation of the POSIX Thread APT). To be able to reliably trace
a call stack, we always have to watch the stack pointer not only on detection
of a CALL or RET instruction: most implementations of exception support in
different languages (such as C++), and the C runtime functions setjmp /longjmp
write the stack pointer directly. Function calls to shared libraries usually are
resolved by the dynamic linker the first time they take place. After resolution,
the linker directly jumps to the real function. As the notion of a jump between
functions is not allowed in a call graph, we pretend two independent calls from
the original call site.

4 Visualization of Profiling Data

Most profiling tools provide a post-processing command to output a text file
with a list of functions sorted by cost and annotated source. While this is useful,
it makes it difficult to get an overview of the performance characteristics of an
application without being overwhelmed by the data measured. A GUI should
enable convenient browsing in the code. Requirements are

— Zooming from coarse to fine granular presentation of profiling data, starting
from event relation to all functions in a shared library, a source file or a

2 _/cachegrind.out.24457 [kcachegrind] - KCachegrind

Eile View Go Settings Help

lomo™ a6 M % &« [[rstucion I[e Grouping) <]
Jsowen]~ |IN?

Call Graph]

B

13418 %

“QFontVetrics ineSpacing
13425 %

E=134.25%

s m=03407C1000 Dr
s EI2850010.00 Dw
ss [17409001 I1mr
s EJ1385030.01 Dimr
ss EE66.66C10.00 Dimw
ss £ 42200004 l2mr
iss E—1 7.586C0.01 D2mr
ss E==51.54C10.00 D2mw
EJ1351C90.01 Lim
EI11.1400002 L2m

[eachegrind.out 24457 [1

otal Instruction Cost: 458 122 708

Fig. 2. Cost Types (Top), Call Graph (Right) and Call TreeMap (Bottom)

C++ class, and going down to relation to loop structure, source code lines
and machine instructions.

— Support for arbitrary and user specified, derived event types, including sup-
port for profile data produced by different profiling tools. Additionally, it is
important to be able to specify and browse according to derived event types,
which have to be calculated on the fly from the given ones (e.g. MFLOPS).

— Visualization of metrics that makes it easy to spot performance problems.

— Possibility to combine and compare multiple profile measurements produced
by different tools.

Even for the simplest program, the runtime linker, the setup of the environ-
ment for the C runtime library, and implementation of high-level print functions
via low-level buffering are involved. Thus, only a fraction of a call graph should
be presented at once. Still, it is desirable to show multiple levels of a call chain.
As a function can be part of multiple call chains, we eventually have to esti-
mate the part of cost which happens to be spent in the given chain. This is only
needed when context information, i.e. an attributed CCT, is not available. Our
call graph view starts from a selected function, and adds callers and callees until
costs of these functions are very small compared to the cost of the selected func-
tion. Because the functions in the call graph view can be selected by a mouse
click, the user can quickly browse up or down a call chain, only concentrating on
the part which exposes most of the event costs. Another view uses a TreeMap
visualization [20]. Functions are represented by rectangles whose area is propor-
tional to the inclusive cost. This allows for functions to be fully drawn inside their
caller. Therefore, only functions which are interesting for performance analysis

Table 2. Simulation and profiling results for the 3D multigrid code

Real Measurement
Instr. retired|L2 Lines In|Runtime
11 879 M ‘ 777 131 K ‘ 40.4 s

Simulation
Instr. exec.| L2 Misses |Runtime
11 879 M ‘751 421 K‘ 1865 s

Standard

Optimized| 11 666 M (361 336 K| 1798 s | 11666 M |383 609 K| 27.1s

are visible. In a TreeMap, one function can appear multiple times. Again, costs
of functions have to be split up based on estimation. Figure 2 shows a screenshot
with both the call graph and TreeMap visualization. Additionally, on the top
left the list of available cost types is shown, produced by the cache simulator.
As “Ir” (instructions executed) is selected as cost type, these costs are the base
for the graphical drawings.

To be able to show both annotated source and machine code®, we rely on
debug information generated by the compiler. Our tool parses this information
and includes it in the profile data file. Thus, the tool suite is independent from
the programming language. Additionally, our profiling tool can collect statis-
tics regarding (conditional) jumps, enabling jumps visualized as arrows in the
annotation view.

5 Application Example and Results

In our DIME project, research on cache optimization strategies for memory-
intensive, iterative numerical code is carried out. The following experiment refers
to a standard and to a cache-optimized implementation of multigrid V(2,2) cy-
cles, involving variable 7-point stencils on a regular 3D grid with 1293 nodes. The
cache-efficient version is based on optimizations such as array padding and loop
blocking [11]. Table 2 shows simulated and real events obtained on a Pentium-M
with 1.4 GHz with corresponding wall clock runtimes. In both cases, the advan-
tage of cache optimization is obvious by effectively reducing the number of cache
misses/cache line loads by 50%. Reduction of runtime gives similar figures.

Simulation runtimes show that the slowdown of runtime instrumentation and
cache simulation is quite acceptable.

6 Related Work

The most popular profiling tool on UNIX are prof/gprof [8]: a profile run needs
the executable to be instrumented by the GCC compiler, which inserts code to
get call arcs and call counts, and enables time based statistical sampling. Mea-
surements inside of shared library code is not supported. GProf has to approx-
imate the inclusive time by assuming that time spent inside a function grows
linearly with the number of function calls. Tools taking advantage of hardware

6 For machine code annotation, the standard GNU disassembler utility ’objdump’ is
used.

performance counters for event based sampling are available by most processor
vendors (e.g. DCPI for Alpha processors [2] or VTune for Intel CPUs). Most of
them relate event counters to code, but Sun’s developer tools also allow data
structure related measurements since recently [10]. OProfile is a free alternative
for Linux [12]. PAPI [4] is a library for reading hardware performance counters.
TAU [16] is a general performance analysis tool framework for parallel code,
using automated source instrumentation.

For instrumentation purpose, binary rewriting of executables is possible with
ATOM [7]. Dynlnst [15] allows for insertion of custom code snippets even into
running processes. Regarding runtime instrumentation, the Shade tool [6] for
SPARC inspired development of Valgrind. Sophisticated hardware simulators
are MICA [9] and RSIM [19]. Using simulation, MemSpy [13] analyses memory
access behavior related to data structures, and SIP [3] gives special metrics for
spatial locality. A profile visualization with a web front end is HPCView [14].

7 Conclusions and Future Work

In this paper, we presented a tool suite for profiling of sequential code based
on cache simulation and runtime instrumentation, and a graphical visualization
front-end allowing fast browsing and recognition of bottlenecks. These tools have
already been used successfully, e.g. in projects at our lab as well as in other labs
in Germany, and in the open-source community.

Improvement of the simulation includes data structure based relation, even
for dynamic allocated memory and stack accesses. This is feasible with the run-
time instrumentation approach. In order to avoid the measured data to become
huge, relation to data types seems necessary. For large arrays, relation to ad-
dress differences of accesses promises to be interesting. Suited visualizations are
needed. Other directions for research are more sophisticated metrics to easily
detect problems regarding spatial or temporal locality. LRU stack distances of
memory accesses [5] are especially useful as they are independent on cache sizes.
For the visualization tool, we want to support combination of simulated and real
measurement: e.g. flat profiles from event based sampling with hardware perfor-
mance counters can be enriched with call graphs got from simulation, and thus,
inclusive cost can be estimated. In addition, we recognize the need to further
look into differences between simulation and reality.

Acknowledgement We would like to thank Julian Seward for his excellent
runtime instrumentation framework, and Nick Nethercote for the cache simulator
we based our profiling tool on.

References

1. G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance Counters
with Flow and Context Sensitive Profiling. In Proceedings of PLDI ’97, June 1997.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

J. M. Anderson, L. M. Berc, J. Dean, et al. Continuous Profiling: Where Have
All the Cycles Gone? ACM Transactions on Computer Systems, 15(4):357-390,
November 1997.

E. Berg and E. Hagersten. SIP: Performance Tuning through Source Code Interde-
pendence. In Proceedings of the 8th International Euro-Par Conference (Euro-Par
2002), pages 177-186, Paderborn, Germany, August 2002.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. The International
Journal of High Performance Computing Applications, 14(3):189-204, Fall 2000.
G. C. Cascaval. Compile-time Performance Prediction of Scientific Programs. PhD
thesis, University of Illinois at Urbana-Champaign, August 2000.

B. Cmelik and D. Keppel. Shade: A Fast Instruction Set Simulator for Execution
Profiling. In SIGMETRICS, Nashville, TN, US, 1994.

A. Eustace and A. Srivastava. ATOM: A Flexible Interface for Building High
Performance Program Analysis Tools, 1994.

S. Graham, P. Kessler, and M. McKusick. GProf: A Call Graph Execution Profiler.
In SIGPLAN: Symposium on Compiler Construction, pages 120-126, 1982.

H. C. Hsiao and C. T. King. MICA: A Memory and Interconnect Simulation
Environment for Cache-based Architectures. In Proceedings of the 33rd IEEE
Annual Simulation Symposium (SS 2000), pages 317-325, April 2000.

M. Itzkowitz, B. J. N. Wylie, Ch. Aoki, and N. Kosche. Memory profiling using
hardware counters. In Proceedings of Supercomputing 2003, November 2003.

M. Kowarschik, U. Riide, N. Thiirey, and C. Weil. Performance Optimization of
3D Multigrid on Hierarchical Memory Architectures. In Proc. of the 6th Int. Conf.
on Applied Parallel Computing (PARA 2002), volume 2367 of Lecture Notes in
Computer Science, pages 307-316, Espoo, Finland, June 2002. Springer.

J. Levon. OProfile, a system-wide profiler for Linux systems.

M. Martonosi, A. Gupta, and T. E. Anderson. Memspy: Analyzing memory system
bottlenecks in programs. In Measurement and Modeling of Computer Systems,
pages 1-12; 1992.

J. Mellor-Crummey, R. Fowler, and D. Whalley. Tools for Application-Oriented
Performance Tuning. In Proceedings of 15th ACM International Conference on
Supercomputing, Italy, June 2001.

B. P. Miller, M. D. Callaghan, J. M. Cargille, et al. The Paradyn Parallel Perfor-
mance Measurement Tool. IEEE Computer, 28(11):37-46, November 1995.

B. Mohr, A. Malony, and J. Cuny. Parallel Programming using C++, chapter
TAU. G. Wilson, editor, M.I.T. Press, 1996.

N. Nethercote and A. Mycroft. The Cache Behaviour of Large Lazy Functional
Programs on Stock Hardware. In Proceedings of the ACM SIGPLAN Workshop
on Memory System Performance (MSP 2002), Berlin, Germany, July 2002.

N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. In
Proceedings of the Third Workshop on Runtime Verification (RV’03), Boulder,
Colorado, USA, July 2003. Available at http://valgrind.kde.org/.

V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An Evaluation of Mem-
ory Consistency Models for Shared-Memory Systems with ILP Processors. In
Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 12—23, October 1996.

B. Shneiderman. Treemaps for space-constrained visualization of hierarchies.
http://www.cs.umd.edu/hcil/treemap-history/index.shtml.

O. Traub, S. Schechter, and M. D. Smith. Ephemeral instrumentation for
lightweight program profiling. In Proceedings of PLDI ’00, 2000.

